This section deals with the Analytical Solutions of Shape Factor available for some simplified geometries
$F_{1 \rightarrow 2}$: This is the ratio of the rate at which surface 1 emits radiant energy which directly strikes surface 2 to the rate at which surface 1 emits radiant energy.

With emissivities e_{1} and e_{2}, total transfer function is, allowing for multiple reflections

$$
G=\frac{e_{1} \cdot e_{2} \cdot F}{1-F_{12} \cdot F_{21} \cdot\left(1-e_{1}\right) \cdot\left(1-e_{2}\right)}
$$

Given below is the summary of analytical calculation of view factors for some regular shape. However, this is just for the reference and we have not made any attempt to veryfy or derive the equations. Hence, the respective caculations are (copyright) of the original authors.
1 Finite Parallel Plates of Equal Size and Coplanar Edges

$$
X=a / c \quad Y=b / c
$$

a	$[\mathrm{~mm}]$	100
b	$[\mathrm{~mm}]$	100
c	$[\mathrm{mm}]$	100
X	$[---]$	1.000
Y	$[--]$	1.000
$\mathrm{~F}_{1 \rightarrow 2}$	$[---]$	0.1998

2 Square to Square in Parallel Plane: CG collinear

$$
\begin{aligned}
& F_{1-2}=\frac{1}{\pi A^{2}}\left\{\ln \frac{\left[A^{2}\left(1+B^{2}\right)+2\right]^{2}}{\left.\left(Y^{2}+2\right)^{2}+2\right)}\right. \\
& +\left(Y^{2}+4\right)^{1 / 2}\left[Y \tan ^{-1} \frac{Y}{\left(Y^{2}+4\right)^{1 / 2}}-X \tan ^{-1} \frac{X}{\left(Y^{2}+4\right)^{1 / 2}}\right] \\
& \left.+\left(X^{2}+4\right)^{1 / 2}\left[X \tan ^{-1} \frac{X}{\left(X^{2}+4\right)^{1 / 2}}-Y \tan ^{-1} \frac{Y}{\left(X^{2}+4\right)^{1 / 2}}\right]\right\} \\
& \quad \text { For } A<0.2:
\end{aligned}
$$

$A=a / c \quad B=b / a \quad X=A \cdot(1+B) \quad Y=A \cdot(1-B)$

a	$[\mathrm{~mm}]$	100
b	$[\mathrm{~mm}]$	100
c	$[\mathrm{mm}]$	100
A	$[\mathrm{~mm}]$	1.00
B	$[\mathrm{~mm}]$	1.00
X	$[---]$	2.000
Y	$[---]$	0.000
K1	$[---]$	0.2877
K2	$[---]$	-3.1416
K3	$[---]$	3.4817
$\mathrm{~F}_{1 \rightarrow 2}$	$[---]$	0.1998

$$
F_{1-2}=\frac{(A B)^{2}}{\pi}
$$

$$
F_{1-2}=\frac{1}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)} \sum_{l=1}^{2} \sum_{k=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2}(-1)^{(i+j+k+l)} G\left(x_{i}, y_{j}, \eta_{k}, \xi_{l}\right)
$$

$$
G=\frac{1}{2 \pi}\left(\begin{array}{l}
(y-\eta)\left[(x-\xi)^{2}+z^{2}\right]^{1 / 2} \tan ^{-1}\left\{\frac{y-\eta}{\left[(x-\xi)^{\eta}+z^{2}\right]^{1 / 2}}\right\} \\
+(x-\xi)\left[(y-\eta)^{2}+z^{2}\right]^{1 / 2} \tan ^{-1}\left\{\frac{x-\xi}{\left[(y-\eta)^{2}+z^{2}\right]^{1 / 2}}\right\} \\
-\frac{z^{2}}{2} \ln \left[(x-\xi)^{2}+(y-\eta)^{2}+z^{2}\right]
\end{array}\right)
$$

$$
5 \text { Rectangle to Co-axial Disc in Parallel Plane For } 0.1 \leq L \leq 2.0 ; 0.1 \leq B \leq 2.0 ; 0.1 \leq D \leq 10.0 \text { (max error } \pm 12.03 \% \text {) }
$$

(1+

$$
2.0 \leq L \leq 10.0 ; 2.0 \leq B \leq 10.0 ; 0.1 \leq D \leq 2.0(\text { max error } \pm 12.59 \%)
$$

$$
=\frac{3.2718\left(1+D^{1.6491}\right)^{0.2334}}{\left[D^{1.5188}+(B L)^{0.495}\right]^{2.0477}}
$$

$$
2.0 \leq L \leq 10.0 ; 2.0 \leq B \leq 10.0 ; 2.0 \leq D \leq 10.0 \text { (max error } \pm 11.42 \% \text {) }
$$

$$
2=\frac{1.1947\left(1+L^{0.4009}\right)\left(1+B^{0.46}\right)}{\left(1+L^{0.5111}\right)\left(1+B^{0.5102}\right)\left(D^{2.0405}+B^{1.195}+L^{1.1949}-3.4734\right)^{20405}}
$$

$0.1 \leq L \leq 2.0 ; 2.0 \leq B \leq 10.0 ; O .1 \leq D \leq 10.0$ (max error $\pm 18.64 \%$)
$2=3.0932 D^{-0.1128}\left[B L+(B L)^{2}+D+D^{2}+D^{4}\right]^{-0.018}\left(D^{1.0656}+L^{0.0215} B^{0.4993}\right)^{-2.2497}$

h	$[\mathrm{~mm}]$	100
I	$[\mathrm{mm}]$	100
W	$[\mathrm{~mm}]$	100
H	$[---]$	1.00
W	$[---]$	1.00
$\mathrm{~K}_{1}$	$[---]$	0.70
$\mathrm{~K}_{2}$	$[---]$	1.33
$\mathrm{~K}_{3}$	$[---]$	0.750
$\mathrm{~K}_{4}$	$[---]$	0.750
$\mathrm{~K}_{5}$	$[---]$	-0.072
$\mathrm{~F}_{1 \rightarrow 2}$	$[---]$	0.200

$\begin{array}{ll}7 & \text { Rectangle to Rectangle in Perpendicular Planes } \\ \text { (All boundaries are either parallel or perpendicular to the }(x, y) \text { and }(\xi, \eta) \text { plane }\end{array}$

8 Two rectangles with one common edge and inclined angle ϕ	
	$F_{1-2}=-\frac{\sin 2 \Phi}{4 \pi B}\left[A B \sin \Phi+\left(\frac{\pi}{2}-\Phi\right)\left(A^{2}+B^{2}\right)+B^{2} \tan ^{-1}\left(\frac{A-B \cos \Phi}{B \sin \Phi}\right)+A^{2} \tan ^{-1}\left(\frac{B-A \cos \Phi}{A \sin \Phi}\right)\right]$
	$+\frac{\sin ^{2} \Phi}{4 \pi B}\left\{\left(\frac{2}{\sin ^{2} \Phi}-1\right) \ln \left[\frac{\left(1+A^{2}\right)\left(1+B^{2}\right)}{1+C}\right]+B^{2} \ln \left[\frac{B^{2}(1+C)}{\left(1+B^{2}\right) C}\right]+A^{2} \ln \left[\frac{A^{2}\left(1+A^{2}\right)^{\cos 2}}{C(1+C)}\right]\right\}$
A_{2}	$+\frac{1}{\pi} \tan ^{-1}\left(\frac{1}{B}\right)+\frac{A}{\pi B} \tan ^{-1}\left(\frac{1}{A}\right)-\frac{\sqrt{C}}{\pi B} \tan ^{-1}\left(\frac{1}{\sqrt{C}}\right)$
	$+\frac{\sin \Phi \sin 2 \Phi}{2 \pi B} A D\left[\tan ^{-1}\left(\frac{A \cos \Phi}{D}\right)+\tan ^{-1}\left(\frac{B-A \cos \Phi}{D}\right)\right]$
-	$+\frac{\cos \Phi}{\pi B} \int_{0}^{z} \sqrt{1+\xi^{2} \sin ^{2} \Phi}\left[\tan ^{-1}\left(\frac{\xi \cos \Phi}{\sqrt{1+\xi^{2} \sin ^{2} \Phi}}\right)+\tan ^{-1}\left(\frac{A-\xi \cos \Phi}{\sqrt{1+\xi^{2} \sin ^{2} \Phi}}\right)\right] d \xi$
	$A=a / c \quad B=b / c \quad C=A^{2}+B^{2}-2 A B \cos (\phi) \quad D=\sqrt{ }\left(A^{2} \sin ^{2}(\phi)+1\right)$

Concentric spheres:

$$
F_{1-2}=1, \quad F_{2-1}=\left(r_{1} / r_{2}\right)^{2}, \quad F_{2-2}=1-\left(r_{1} / r_{2}\right)^{2}
$$

15 Infinite Geometries

$F_{1-2}=\frac{1}{2}\left[1+\frac{h}{w}-\sqrt{1+\left(\frac{h}{w}\right)^{2}}\right]$

$F_{1-2}=\left(A_{1}+A_{2}-A_{3}\right) / 2 A_{1}$
ne

$F_{1-2}=\frac{A+1-\left(A^{2}+1-2 A \mathbf{c o s} C\right)^{1 / 2}}{2}$
$F_{1-2}=\frac{r}{b-a}\left[\tan ^{-1} \frac{b}{c}-\tan ^{-1} \frac{a}{c}\right]$

Infinite plane to row of parallel cylinders, or rows of in-line cylinders $D=d / b$
$15 f$

Let $X=1+s / D$. Then:

$$
F_{1-2}=F_{2-1}=\frac{1}{\pi}\left[\sqrt{X^{2}-1}+\sin ^{-1} \frac{1}{X}-X\right]
$$

Concentric Cylinders
$F_{1-2}=1-\left(1-D^{2}\right)^{1 / 2}+D \tan ^{-1}\left(\frac{1-D^{2}}{D^{2}}\right)^{1 / 2}$
For n rows of in -line pipes:
$F_{1-n_{-} \text {rows }}=1-\left(1-F_{1-2}\right)^{n}$

Infinite plane to first, second, and first plus second rows of infinitely long parallel tubes of equal diameter in equilateral triangular array

$\underline{\mathbf{R}}$	$\mathbf{F}_{1 \text {-front }}$ row	F1-2nd row	$\underline{\mathbf{R}}$	$\mathbf{F}_{\text {1-front }}$ row	F1-2nd row	$\underline{\mathbf{R}}$	$\mathbf{F}_{\text {1-front }}$ row	F1-2nd row
1.5	0.8154	0.138	4.0	0.3613	0.2008	6.5	0.2298	0.1574
2.0	0.6576	0.1953	4.5	0.3243	0.1916	7.0	0.2142	0.1503
2.5	0.5472	0.214	5.0	0.2941	0.1824	8.0		
3.0	0.4675	0.2149	5.5	0.269	0.1735	9.0		
3.5	0.4077	0.2093	6.0	0.2479	0.1652	10.0		

22 Annulus to coaxial annulus of different outer radius; both annuli have inner radius of blocking coaxial cylinder			
\ldots	r_{1}	[m]	1.000
$\sim \mathrm{R}_{2}{ }^{2}-\mathrm{R}_{\mathrm{c}}{ }^{2} ; \mathrm{C}=\mathrm{R}_{2}+\mathrm{R}_{1} ; \mathrm{D}=\mathrm{R}_{2}-\mathrm{R}_{1} ; \mathrm{Y}=\mathrm{A}^{1 / 2}+\mathrm{B}^{1 / 2}$	r_{2}	[m]	1.000
$+1$	r_{c}	[m]	0.500
${ }_{1}$	h	[m]	0.500
-	R_{1}	[--]	2.000
${ }_{4}{ }_{2}$	R_{2}	[--]	2.000
P	R_{c}	[--]	1.000
	A	[m^{2}]	3.000
$\sim 3 \cos ^{-1} \frac{R_{r}}{R_{5}}+\frac{B}{2} \cos ^{-1} \frac{R_{8}}{R_{1}}+2 R_{r}\left(\tan ^{-1} Y-\tan ^{-1} A^{1 / 2}-\tan ^{-1} B^{1 / 2}\right)$	B	[m²]	3.000
$\begin{array}{lllll}2 & R_{2} & 2 & R_{1}\end{array}$	C	[m]	4.000
- $\left(1+C^{a}\right)\left(1+D^{2}\right)^{1 / 2}{ }^{-1}\left[\left(1+C^{2}\right)\left(Y^{2}-D^{2}\right)\right]^{1 / 2}$	D	[m]	0.000
$\left.-\left[\left(1+C^{\alpha}\right)\left(1+D^{2}\right)\right]^{1 / 2} \tan ^{-1} \frac{(1+C)\left(Y-D^{2}\right)}{\left(1+D^{2}\right)\left(C^{2}-Y^{2}\right)}\right]$	Y	[--]	3.464
	K_{1}	[--]	1.532
$F_{\rightarrow \rightarrow}=1$ $\left[\left[1+(R+R)^{2}\right](R-R)^{1 / 2}\right.$	K_{2}	[--]	5.903
$\left.\mathrm{F}_{1-2}=\frac{1}{\pi A} \right\rvert\,+\left[1+\left(R_{1}+R_{n}\right)^{2}\right]\left[1+\left(R_{1}-R_{e}\right)^{2}\right]^{1 / 2} \tan ^{-1}\left\{\left[1+\left(R_{1}+R_{0}\right)\right]\left(R_{1}-R_{6}\right)\right\}$	K_{3}	[--]	4.077
$\left.\left[\begin{array}{lll}1\end{array}\right]\left[\begin{array}{ll}1\end{array}\right] \quad\left[1+\left(R_{1}-R_{2}\right)^{2}\right]\left(R_{1}+R_{2}\right)\right\}$	K_{4}	[--]	4.077
[$\mathrm{F}_{1 \rightarrow 2}$	[--]	0.402
$\left.+\left[1+\left(R_{2}+R_{2}\right)^{2}\right]\left[1+\left(R_{2}-R_{2}\right)^{2}\right]^{1 / 2} \tan ^{-1}\left\{1+\left(R_{2}+R_{8}\right)^{2}\right]\left(R_{2}-R_{e}\right)\right\}$	A_{1}	[m²]	2.356
$\left.\left[1+\left(R_{2}+R_{r}\right)\right]\left[1+\left(R_{2}-R_{r}\right)\right]\right\} \tan \left\{\begin{array}{l}\left.\left.\text { [1+(R) } R_{2}-R_{r}\right)^{2}\right]\left(R_{2}+R_{r}\right)\end{array}\right.$	A_{2}	[m²]	2.356
(use prineipal values in evaluating all inverse trig functions.)	$\mathrm{F}_{2 \rightarrow 1}$	[--]	0.402
23 Annular ring between two concentric cylinders to inside of outer cylinder, inner radius of ring is equal to radius of inner cylinder$\begin{aligned} & R_{1}=r_{1} / h ; R_{2}=r_{2} / h ; R_{c}=r_{\mathrm{c}} / h ; A=R_{1}{ }^{2}-R_{c}{ }^{2} \\ & B=R_{2}{ }^{2}-R_{c}{ }^{2} ; C=R_{2}+R_{1} ; D=R_{2}-R_{1} ; Y=A^{1 / 2}+B^{1 / 2} \end{aligned}$	r_{c}	[m]	0.500
	r_{1}	[m]	0.750
	r_{2}	[m]	1.000
	h	[m]	0.500
	R_{1}	[--]	1.500
	R_{2}	[--]	2.000
	R_{c}	[--]	1.000
$4)^{4}$	A	[--]	1.250
-	B	[----]	3.000
	C	[----]	3.500 0.500
	Y	[---]	2.850
$\bigcirc \sim 1{ }^{(1)}$	K_{1}	[--]	2.349
$\left.-\left[R_{2}^{2}-R_{1}^{2}\right) k=n-\left\{\frac{C}{D} \left\lvert\, \frac{Y^{4}-D^{2}}{C^{3}-Y^{2}}\right.\right]^{r^{2}}\right\}$	K_{2}	[--]	5.502
	K_{3}	[--]	6.575
	K_{4}	[--]	2.569
	$\mathrm{F}_{1 \rightarrow 2}$	[--]	-0.329
24 Disk in cylinder base or top to inside surface of right circular cylinder $\quad \mathrm{R}=\mathrm{r}_{2} / r_{1} ; \mathrm{H}=\mathrm{h} / r^{\prime}$			
$F_{1-2}=\frac{1}{2}\left\{1-R^{2}-H^{2}+\left[\left(1+R^{2}+H^{2}\right)^{2}-4 R^{2}\right]^{1 / 2}\right\}$	r_{2}	[m]	1.000
	h	[m]	0.500
	R	[--]	2.000
	H	[--]	1.000
	$\mathrm{F}_{1 \rightarrow 2}$	[--]	0.236
25 Interior of finite length right circular coaxial cylinder to itself $\quad \mathrm{R}_{1}=r_{1} / h ; \mathrm{R}_{2}=r_{2} / \mathrm{h}$			
Interior of Outer Cylinder (use principal values in evaluating all inverse trig functions)	r_{1}	[m]	0.500
	r_{2}	[m]	1.000
	h	[m]	0.500
	R_{1}	[--]	1.000
	R_{2}	[--]	2.000
	K_{1}	[--]	4.189
	K_{2}	[--]	5.903
	K_{3}	[--]	2.580
	$\mathrm{F}_{1 \rightarrow 1}$	[--]	0.138

r_{1}	$[\mathrm{~m}]$	0.500
r_{2}	$[\mathrm{~m}]$	1.000
h	$[\mathrm{~m}]$	0.500
R_{1}	$[---]$	1.000
R_{2}	$[---]$	2.000
A	$[---]$	3.000
B	$[--]$	1.000
$\mathrm{~K}_{1}$	$[---]$	-0.524
$\mathrm{~K}_{2}$	$[---]$	2.094
$\mathrm{~K}_{3}$	$[---]$	4.077
$\mathrm{~F}_{1 \rightarrow 2}$	$[---]$	0.232
$\mathrm{~A}_{1}$	$\left[\mathrm{~m}^{2}\right]$	3.142
$\mathrm{~A}_{2}$	$\left[\mathrm{~m}^{2}\right]$	1.571
$\mathrm{~F}_{2 \rightarrow 1}$	$[---]$	0.465

27 Interior of outer right circular cylinder of finite length to annular end enclosing space between coaxial cylinders

$$
H=h / r_{2} ; X=\left(1-R^{2}\right)^{1 / 2}
$$

$$
R=r_{1} / r_{2} ; Y=R\left(1-R^{2}-H^{2}\right) /\left(1-R^{2}+H^{2}\right)
$$

r_{1}	$[\mathrm{~m}]$	0.500
r_{2}	$[\mathrm{~m}]$	1.000
h	$[\mathrm{~m}]$	0.500
H	$[---]$	0.500
R	$[--]$	0.500
X	$[--]$	0.866
Y	$[---]$	0.250
$\mathrm{~K}_{1}$	$[---]$	-0.121
$\mathrm{~K}_{2}$	$[---]$	0.654
$\mathrm{~K}_{3}$	$[---]$	1.019
$\mathrm{~K}_{4}$	$[---]$	1.476
$\mathrm{~F}_{1 \rightarrow 2}$	$[---]$	0.315
$\mathrm{~A}_{1}$	$\left[\mathrm{~m}^{2}\right]$	3.142
$\mathrm{~A}_{2}$	$\left[\mathrm{~m}^{2}\right]$	2.356
$\mathrm{~F}_{2 \rightarrow 1}$	$[---]$	0.420

28 Annular end enclosing space between coaxial right circular cylinders to opposite annular end

29 Outer surface of cylinder to annular disk at end of cylinder

$R=r_{1} / r_{2} ; H=h / r$
$A=H^{2}+R^{2}-1 ; B=H^{2}-R^{2}+1$

r_{1}	$[\mathrm{~m}]$	0.500
r_{2}	$[\mathrm{~m}]$	1.000
h	$[\mathrm{~m}]$	0.500
R	$[--]$	0.500
H	$[---]$	0.500
A	$[---]$	-0.500
B	$[---]$	1.000
$\mathrm{~K}_{1}$	$[---]$	-0.316
$\mathrm{~K}_{2}$	$[---]$	-0.083
$\mathrm{~F}_{1 \rightarrow 2}$	$[---]$	0.268
Countercheck	0.268	
$\mathrm{~A}_{1}$	$\left[\mathrm{~m}^{2}\right]$	1.571
$\mathrm{~A}_{2}$	$\left[\mathrm{~m}^{2}\right]$	2.356
$\mathrm{~F}_{2 \rightarrow 1}$	$[---]$	0.178

30 Inner coaxial cylinder to outer coaxial cylinder; inner cylinder entirely within outer
$X=x / P_{2} ; Z=z / P_{2} ; L=\ell / P_{2} ; R=P_{1} / r_{2} \quad F_{1-2}=1+\frac{X}{L} F_{X}+\frac{Z}{L} F_{Z}-\left(\frac{L+X}{L}\right) F_{I+X}-\frac{L+Z}{L} F_{I+Z}$
$A_{\xi}=\xi^{2}+R^{2}-1 ; B_{\xi}=\xi^{2}-R^{2}+1$
$F_{\xi}=\frac{B_{\xi}}{8 R \xi}+\frac{1}{2 \pi}\left\{\cos ^{-1} \frac{A_{\xi}}{B_{\xi}}-\frac{1}{2 \xi}\left[\frac{\left(A_{\xi}+2\right)^{2}}{R^{2}}-4\right]^{1 / 2} \cos ^{-1} \frac{A_{\xi} R}{B_{\xi}}-\frac{A_{\xi}}{2 \xi R} \sin ^{-1} R\right\}$

```
31 Parallel opposed cylinders of unequal radius and equal finite length
```



```
\[
\begin{aligned}
A= & \frac{1}{2 \pi R}\left\{\left[C^{2}-(1+R)^{2}\right]^{1 / 2}-\left[C^{2}-(1-R)^{2}\right]^{1 / 2}+\pi R+(1-R) \cos ^{-1}\left(\frac{1-R}{C}\right)\right. \\
& \left.-(1+R) \cos ^{-1}\left(\frac{1+R}{C}\right)\right\}
\end{aligned}
\]
\[
B=\frac{1}{\pi} \sin ^{-1}\left(\frac{1}{C}\right)
\]
\[
C=1-\frac{1}{\pi}\left(\cos ^{-1}\left(\frac{Y_{1}}{Z_{1}}\right)-\frac{1}{2 R L}\left\{\left[\left(Y_{1}+2 X_{1}^{2}\right)^{2}-\left(2 X_{1} R\right)^{2}\right]^{1 / 2} \cos ^{-1}\left(\frac{R Y_{1}}{X_{1} Z_{1}}\right)\right.\right.
\]
\[
\left.\left.+Y_{1} \sin ^{-1}\left(\frac{R}{X_{1}}\right)-\frac{\pi}{2} Z_{1}\right\}\right)
\]
\[
\begin{aligned}
& X_{1}=\left[\frac{\left(C^{2}-1\right)^{2 / 2}-\left(\frac{\pi}{2}\right)}{\sin ^{-1}\left(\frac{1}{C}\right)}+1\right]^{1 / 2} ; X_{2}=R\left\{\frac{\left[\left(\frac{C}{R}\right)^{2}-1\right]^{1 / 2}-\frac{\pi}{2}}{\sin ^{-1}\left(\frac{R}{C}\right)}+1\right\} \\
& Y=L^{2}-X^{2}+R^{2} ; Z=L^{2}+X^{2}-R^{2}
\end{aligned}
\]
\[
D=1-\frac{1}{\pi}\left(\cos ^{-1}\left(\frac{Y_{2}}{Z_{2}}\right)-\frac{1}{2 L}\left(Y_{2} R^{4}+2 X_{2}^{2}\right)^{2}-\left(2 X_{2}\right)^{1 / 2} \cos ^{-1}\left(\frac{Y_{2}}{X_{2} Z_{2}}\right)\right.
\]
\[
\left.+R^{2} Y_{2} \sin -1 X_{2}-\left(\frac{\pi R^{2} Z^{2}}{2}\right)\right)
\]
\[
E=1-\frac{1}{\pi} \cos ^{-1}\left(\frac{L^{2}-X_{1}^{2}}{L^{2}+X_{1}^{2}}\right)
\]
```

32 Inner coaxial cylinder to outer coaxial cylinder; inner cylinder extends beyond both ends of outer

$$
\begin{aligned}
& X=x / r_{2} ; Y=y / r_{2} ; Z=z / r_{2} ; L=\ell / r_{2} ; R=r_{1} / r_{2} \\
& A_{\xi}=\xi^{2}+R^{2}-1 ; B_{\xi}=\xi^{2}-R^{2}+1 \\
& F_{\xi}=\frac{B_{\xi}}{8 R \xi}+\frac{1}{2 \pi}\left\{\cos ^{-1} \frac{A_{\xi}}{B_{\xi}}-\frac{1}{2 \xi}\left[\frac{\left(A_{\xi}+2\right)^{2}}{R^{2}}-4\right]^{1 / 2} \cos ^{-1} \frac{A_{\xi} R}{B_{\xi}}-\frac{A_{\xi}}{2 \xi R} \sin ^{-1} R\right\}
\end{aligned}
$$

33 Outside of inner (smaller) coaxial cylinder to inside of larger cylinder; smaller cylinder completely outside larger

$$
\begin{aligned}
& F_{1-2}=\frac{L+D}{L} F_{L+D}+\frac{Y+D}{L} F_{Y+D}-\frac{D}{L} F_{D}-\frac{L+D+Y}{L} F_{Z+L+Y} \\
& D=d / r_{2} ; Y=y / r_{2} ; L=\ell / r_{2} ; R=r_{1} / r_{2} \\
& A_{\xi}=\xi^{2}+R^{2}-1 ; B_{\xi}=\xi^{2}-R^{2}+1 \\
& F_{\xi}=\frac{B_{\xi}}{8 R \xi}+\frac{1}{2 \pi}\left\{\cos ^{-1} \frac{A_{\xi}}{B_{\xi}}-\frac{1}{2 \xi}\left[\frac{\left(A_{\xi}+2\right)^{2}}{R^{2}}-4\right]^{1 / 2} \cos ^{-1} \frac{A_{\xi} R}{B_{\xi}}-\frac{A_{\xi}}{2 \xi R} \sin ^{-1} R\right\}
\end{aligned}
$$

