
Cite as: Sankar Raju.N : Evoking existing function objects and creating new user-defined function objects
for Post- Processing. In Proceedings of CFD with OpenSource Software, 2017, Edited by Nilsson. H.,

http://dx.doi.org/10.17196/OS_CFD#YEAR_2017

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Evoking existing function objects and
creating new user-defined function objects

for Post- Processing

Developed for OpenFOAM-17.06

Author:
SANKAR RAJU . N

Peer reviewed by:
Surya Kaundinya Oruganti

Ebrahim Ghahramani (CTH)

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some other
OpenSource software are introduced to the students. Any reader should be aware that it might not be free

of errors. Still, it might be useful for someone who would like learn some details similar to the ones
presented in the report and in the accompanying files. The material has gone through a review process.
The role of the reviewer is to go through the tutorial and make sure that it works, that it is possible to

follow, and to some extent correct the writing. The reviewer has no responsibility for the contents.

January 8, 2018

Acknowledgements
First, I wish to convey my sincere thanks to Prof.Dr. H̊akan Nilsson for organizing the Open

Source CFD course and providing it as an effective platform for spreading the knowledge of Open-
FOAM for users from versatile arenas.

Special thanks to scientists from DESY for formulating such an interesting problem statement.
Also I wish to thank my friends from MPI, DESY, Chalmers , IITM & AU for their continuous
support and encouragement.

Last but not the least, I would like to thank my friends of this course from Juelich and Lyon.
Indeed their perseverence and hard work are worthy of admiration and gratitude.

1

Learning outcomes

The reader will learn:

• An explanatory guide for the field and force function objects for post processing in OpenFOAM

• A brief description of the library classification depending on the inheritance of function objects.

• Procedure to evoke Evoke the existing function objects which are present in the OpenFOAM
library by default for post-processing and to control them on run time.

• To create a new user-defined (customary)function object for Post Processing using a detailed
step by step methodology and creating a template for creating newer customary ones on
demand.

• A sample tutorial to utilize the created function object.

2

Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

• Skansholm, Jan ”C++ from the Beginning” Pearson Education (2004).

• White, Frank M. ”Fluid mechanics. 5th.” Boston: McGraw-Hill Book Company (2003).

3

Contents

1 Evoking Existing Function Objects 5
1.1 Function Object . 5

1.1.1 Function object libraries for post processing 5
1.1.2 Fields . 6

1.2 Evoking . 10
1.2.1 Function objects depended on the field expression 10

2 User-defined Post-Processing function object 12
2.1 Steps . 12

3 Helicity 15
3.1 Creation of helicity.C . 15
3.2 Creation of helicity.H . 17
3.3 Compiling . 19
3.4 Tutorial . 21

3.4.1 Test Case . 21

4 Study Questions 22

5 APPENDIX 24
5.1 Helicity.C . 24
5.2 Helicity.H . 27

4

Chapter 1

Evoking Existing Function Objects

1.1 Function Object

This section initially discusses briefly on the various types of function objects available for post-
processing. And consequently, the detailed procedure of evoking existing function objects is ex-
plained with a some examples.

1.1.1 Function object libraries for post processing

The post processing in OpenFOAM is performed using the function objects. The function objects
are options that are run time selectable. The results generated by function objects can be both
obtained in the due course of simulation and after the calculation.

The current report primarily deals with the explanation for the run time - result generation for
post-processing. The various function objects are classified as follows:

1. Field

2. Forces

3. Graphics

4. Lagrangian

5. Sampling

6. Solvers

7. Utilities

Of all the library categories the function objects that is of interests are Fields and Forces, as these
are the type types of libraries that are repeatedly utilized in all the simulations performed in Open-
FOAM.

5

1.1. FUNCTION OBJECT CHAPTER 1. EVOKING EXISTING FUNCTION OBJECTS

1.1.2 Fields

The field function objects can be also called as Reaction sensitivity analysis function objects, as
they act as a relative performance analysis functions between the thermophysical function objects
and the analysis (in Figure 1.1). The fields library category consists of various functions that can
be represented as scalar fields.

Figure 1.1: Collaboration diagram of field function object

The function objects that are inherited from the field expression with/without writeFile is men-
tioned in the following section.The function object which inherits a write file, writes it’s corre-
sponding file in each of the solution folder for every time step. Though the outline of the function
object code is same among the function objects, the dependencies highly vary and hence a deeper
understanding of the classification is important.

1. components

This is used to calculate the components of a field

2. CourantNo

This function object calculates and outputs the Courant number as a volScalarField.
The field is stored on the mesh database so that it can be retrieved and used for other
applications.

3. Curle

This function object calculates the acoustic pressure based on Curle’s analogy.

4. div

This function object calculates the divergence of a field. The operation is limited to
surfaceScalarFields and volVectorFields, and the output is a volScalarField.

5. enstrophy

This function object calculates the enstrophy of the velocity.

6. flowType

This function object calculates and writes the flowType of a velocity field.

7. flux

This function object calculates and writes the flux of a field. The operation is limited to
surfaceVectorFields and volVectorFields, and the output is a surfaceScalarField.

8. grad

This function object calculates the gradient of a field.

9. Lambda2

This function object calculates and outputs the second largest eigenvalue of the sum of
the square of the symmetrical and anti-symmetrical parts of the velocity gradient tensor.

10. blendingFactor

This function object calculates and outputs the blendingFactor as used by the bended
convection schemes. The output is a volume field (cells) whose value is calculated via the
maximum blending factor for any cell face.

11. MachNo

This function object calculates and writes the Mach number as a volScalarField.

6

1.1. FUNCTION OBJECT CHAPTER 1. EVOKING EXISTING FUNCTION OBJECTS

12. mag

This function object calculates the magnitude of a field.

13. magSqr

This function object calculates the magnitude of the sqr of a field.

14. PecletNo

This function object calculates and outputs the Peclet number as a surfaceScalarField.

15. pressure

This function object includes the tools to manipulate the pressure into different forms.

16. Q

This function object calculates and outputs the second invariant of the velocity gradient tensor
[1/s2].

17. randomise

This function object adds a random component to a field, with a specified perturbation
magnitude.

18. streamFunction

This function object calculates and outputs the stream-function as a pointScalarField.

19. subtract

This one,from the first field subtract the remaining fields in the list. The operation can
be applied to any volume or surface fields generating a volume or surface scalar field.

20. vorticity

This function object calculates the vorticity, the curl of the velocity.

It is then sufficient to mention the respective field function object when the function object being
called in the control dict. More explanation can be found in the evoking existing function object
section.

The function objects that are inherited from fvMeshFunctionObject with/without writeFile are,

1. ddt2

This function object calculates the magnitude squared of d(scalarField)/dt.

2. DESModelRegions

This function object writes out an indicator field for DES turbulence calculations.

3. extractEulerianParticles

This function object generates particle size information from Eulerian calculations. Ex-
ample: Volume of Fluids

4. fieldAverage

This function object calculates average quantities for a user-specified selection of volu-
metric and surface fields.

5. fieldCoordinateSystemTransform

This function object transforms a user-specified selection of fields from global Cartesian
to a local system. Also to note that the fields are run-time modifiable.

6. fieldMinMax

This function object calculates the value and location of scalar minimum and maximum
for a list of user-specified fields.

7

1.1. FUNCTION OBJECT CHAPTER 1. EVOKING EXISTING FUNCTION OBJECTS

7. fieldValueDelta

This function object provides an operation between two ’field value’ function objects.

8. fluxSummary

This function object calculates the flux across selections of faces.

9. histogram

This function object writes the volume-weighted histogram of a volScalarField

10. mapFields

This function object calculates the vorticity, the curl of the velocity.

11. nearWallFields

This function object map fields from local mesh to secondary mesh at run-time.

12. particleDistribution

This function object generates a particle distribution for lagrangian data at a given time.

13. processorField

This function object writes a scalar field whose value is the local processor ID. The output
field name is ’processorID’.

14. readFields

This function object reads fields from the time directories and adds them to the mesh
database for further post-processing.

15. regionSizeDistribution

This function object creates a size distribution via interrogating a continuous phase frac-
tion field

16. setFlow

This function object provides options to set the velocity and flux fields as a function of
time.

17. surfaceInterpolate

This function object linearly interpolates volume fields to generate surface fields.

18. turbulenceFields

This function object stores turbulence fields on the mesh database for further manipula-
tion.

19. writeCellCentres

This function object writes the cell-centres volVectorField and the three component fields
as volScalarFields.

8

1.1. FUNCTION OBJECT CHAPTER 1. EVOKING EXISTING FUNCTION OBJECTS

20. writeCellVolumes

This function object writes the cell-volumes volScalarField.

21. XiReactionRate

This function object writes the turbulent flame-speed and reaction-rate volScalarFields
for the Xi-based combustion models.

22. yPlus

This function object evaluates and outputs turbulence y+ for turbulence models.

23. zeroGradient

This function object creates a volume field with zero-gradient boundary conditions from
another volume field.

24. specieReactionRates

This function object writes the domain averaged reaction rates for each specie for each
reaction into the file <timeDir> /specieReactionRates.dat.

9

1.2. EVOKING CHAPTER 1. EVOKING EXISTING FUNCTION OBJECTS

1.2 Evoking

All the pre-available or existing function objects are evoked or called from the controlDict.
Inorder to understand the evoking of the existing function objects,the classification made in the
previous section is considered.

1.2.1 Function objects depended on the field expression

For the function objects which are just dependent on the function object field expression, it’s manda-
tory to call the type of function object that one wants to compute and the library on which it is
dependent on. If one wants to calculate only in a specific region, then the line referring the region
can be mentioned (example,using patches).

The base template can be written as,

1 fieldExpressionFunctionObjectName

2 {

3 type fieldExpressionName;

4 libs ("libfieldFunctionObjects.so");

5 }

Example 1
Let’s revoke a the Courant Number function object:

1 CourantNo1

2 {

3 type CourantNo;

4 libs ("libfieldFunctionObjects.so");

5 }

Here the function object type is mentioned as CourantNo. The libfieldFunctionObjects.so

shared object library of the function object is utilized by the Courant No. function object. Hence
Courant number calculated provides a measure of the rate at which information is transported under
the influence of a flux field.

10

1.2. EVOKING CHAPTER 1. EVOKING EXISTING FUNCTION OBJECTS

Example 2
Let’s revoke the Q criterion:

1 QCriterion

2 {

3 type Q;

4 libs ("libfieldFunctionObjects.so");

5 field U;

6 result myQ;

7 }

In the above Example 2, one could find that the particular field (Velocity) that needs to be computed
is mentioned. Secondly the result is asked to be displayed with the name myQ.

Example 3
Let’s calculate the y+ of the specific regions of a test case (say dam Break case- in this example)

1 yPlus1

2 {

3 type yPlus;

4 libs ("libfieldFunctionObjects.so");

5 patches (leftWall rightWall lowerWall);

6 }

In the y+ example, the particular sections have been mentioned were the calculation needs to be
performed.

If the particular regions of interest aren’t mentioned, then the calculation is made for the entire
region. Hence, in order to save computational resources, one needs to act wisely on selection of the
various sections that are to be calculated.

Example 4
Let’s compute a particular turbulence field parameter

1 turbulenceFields1

2 {

3 type turbulenceFields;

4 libs ("libfieldFunctionObjects.so");

5 field R;

6 }

Here the stress tensor parameterR is alone calculated using the turbulenceFields function ob-
ject. The other turbulence field parameters that can be measured are turbulence kinetic energy
(k), dissipation rate of turbulence kinetic energy (epsilon), specific dissipation rate (omega). For
incompressible cases, one can additionally measure eddy kinematic viscosity (nut), effective kine-
matic viscosity (nuEff), deviatoric stress tensor (devReff). And for the compressible cases, one
can additionally measure eddy dynamic viscosity (mut), effective dynamic viscosity (muEff), ther-
mal eddy diffusivity (alphat), effective eddy thermal diffusivity (alphaEff), deviatoric stress tensor
(devRhoReff).

11

Chapter 2

User-defined Post-Processing
function object

This chapter deals with the detail description of the steps to be followed for creating a new function
object for post- processing. And a greater is given for the creation of a new scalar field function
for calculations. The initial section deals with the steps to be followed for creating a new function
object. Following which a sample template with a function object named ”helicity” is created.

2.1 Steps

The basic steps for creating a new function object (here considered for fields and forces) for post-
processing are described as follows.
Overall Procedure

1. Create .C and .H files for the function object that is intended to be created

2. Copy one set of .C and .H files created into the ”lnInclude” folder

3. Follow the compiling procedure for the custom developed function object. A detailed method-
ology to compile a custom defined function object has been described in the last section of this
chapter.

Procedure to create *.C file

The .C file created consists of 5 major sections, which are described as follows.

1. Header files

• In this section one needs to include all the header files necessary for computation by the
Private Member Functions. As the post-processing results are intended to be computed
during the run time, the run time header file and the header file of the current function
object are mandatorily included, which are represented as,

#include "helicity.H"

#include "addToRunTimeSelectionTable.H"

• The other header files are the ones necessary for computation.

12

2.1. STEPS CHAPTER 2. USER-DEFINED POST-PROCESSING FUNCTION OBJECT

2. Static Data Members

• The general outline of the static data member function can be written as:

1 namespace Foam

2 {

3 namespace functionObjects

4 {

5 defineTypeNameAndDebug(userDefFnObjName, 0);

6 addToRunTimeSelectionTable(functionObject,userDefFnObjName,dictionary);

7 }

8 }

• The line 5 links to the first 0 file of the computation case intended. The line 6 men-
tions that functionObject is added to AddToTable and thereby adding the user Defined
Function Object’s constructor to the hash table.

3. Private Member Functions

• The private Member functions include the definition of the function object to be com-
puted. It is suggested to note that the member functions have direct access to all data
members and member function of the class. The general outline of the private Member
function can be written as:

1 bool Foam::functionObjects::userDefFnObjName::calc()

2 {

3 return calcAllTypes(*this);

4 }

4. Constructors

• The constructors are the ones that are used to initialize the attributes. The general
outline of the Constructors can be written as:

1Foam::functionObjects::userDefFnObjName::userDefFnObjName

2 (

3 const word& name,

4 const Time& runTime,

5 const dictionary& dict

6)

7 :

8 fieldsExpression(name, runTime, dict)

9 {

10 setResultName("userDefFnObjName");

11 }

13

2.1. STEPS CHAPTER 2. USER-DEFINED POST-PROCESSING FUNCTION OBJECT

5. Destructor

• A destructor is a member function without parameters, with the same name as the class,
but with a ˜(tilda) in front of it. The destructor is defined explicitly, so as to ensure that
all the memory is returned.

• The general outline of the destructor can be written as:

1Foam::functionObjects::userDefFnObjName::~userDefFnObjName()

2 {}

Procedure to create *.H file

1. Inclusion of header files

• The ifndef is used to check if the header file has been defined earlier in the include file or
in the file. And the command is hence written as:

#ifndef functionObjects_userDefFnObjName_H

next the header file is defined as follows:

#define functionObjects_add_H

And Finally the inherited header files are mentioned. Say, the field Expression header file
or the fvMeshFunction header file

#include "fieldsExpression.H"

2. Declaration of the user defined function object for Post-Processing

This section should contain the member function (either public or private), with their
corresponding constructors and destructor.

14

Chapter 3

Helicity

The creation of the helicity.C and helicity.H files are discussed as follows.

3.1 Creation of helicity.C

Based on the methodology stated in the section 2.1 for creation of new *.C file, the helicity.C is
created as,

1 *---*/

2

3 #include "helicity.H"

4 #include "fvcCurl.H"

5

6 #include "addToRunTimeSelectionTable.H"

7

8

9

10 // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

11

12 namespace Foam

13 {

14 namespace functionObjects

15 {

16 defineTypeNameAndDebug(helicity, 0);

17

18 addToRunTimeSelectionTable

19 (

20 functionObject,

21 helicity,

22 dictionary

23);

24 }

25 }

26

27

28// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //

29

30 bool Foam::functionObjects::helicity::calc()

31 {

32 if (foundObject<volVectorField>(fieldName_))

15

3.1. CREATION OF HELICITY.C CHAPTER 3. HELICITY

33 {

34 return store

35 (

36 resultName_,

37 fvc::curl(lookupObject<volVectorField>(fieldName_)) &

lookupObject<volVectorField>(fieldName_)

38);

39 }

40 else

41 {

42 return false;

43 }

44

45 return true;

46 }

47

48

49 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

50

51 Foam::functionObjects::helicity::helicity

52 (

53 const word& name,

54 const Time& runTime,

55 const dictionary& dict

56)

57 :

58 fieldExpression(name, runTime, dict, "U")

59 {

60 setResultName(typeName, fieldName_);

61 }

62

63

64 // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

65

66 Foam::functionObjects::helicity::~helicity()

67 {}

69

70

71 // *** //

Explanation

• In the section 1 of the file, the header files are included. In the line 3, the user defined header
file, helicity.H is included. In the line 6, the header file ”addToRunTimeSelectionTable” is
included, which adds the derived constructor(”helicity” in this case) to the hash table held by
base. The only extra necessary header file is the ”fvCurl.H”. This function object’s header file
is hence utilized in the Private Member Function Section.

• In the Static Data Member section, the type name of the function object is specified. Hence
this forms the type name to be called for in the controlDict of the simulated case 18-23 is used
to mention that the simulation needs to be computed on the due course of simulation, where
the helicity file is created in every directory file created (for every time step). In the template
of the helicity.C attached in the appendix, one could see the header comments too.

16

3.2. CREATION OF HELICITY.H CHAPTER 3. HELICITY

3.2 Creation of helicity.H

Based on the methodology stated in the section 2.1 for creation of new *.H file, the helicity.H is
created as follows:

---/

1 #ifndef functionObjects_helicity_H

2 #define functionObjects_helicity_H

3

4 #include "fieldExpression.H"

5

6 // * //

7

8 namespace Foam

9 {

10 namespace functionObjects

11 {

12

13 /*---*\

14 Class helicity Declaration

15 *---*/

16

17 class helicity

18 :

19 public fieldExpression

20 {

21 // Private Member Functions

22

23 //- Calculate the helicity field and return true if successful

24 virtual bool calc();

25

26

27 public:

28

29 //- Runtime type information

30 TypeName("helicity");

31

32

33 // Constructors

34

35 //- Construct from Time and dictionary

36 helicity

37 (

38 const word& name,

39 const Time& runTime,

40 const dictionary& dict

41);

42

43

44 //- Destructor

45 virtual ~helicity();

46 };

47

48

17

3.2. CREATION OF HELICITY.H CHAPTER 3. HELICITY

49 // * //

50

51 } // End namespace functionObjects

52 } // End namespace Foam

53

54 // * //

55

56 #endif

57

58 // *** //

Explanation

• Line 1 with the ”ifndef” is used to check if the header file ”helicity.H” has been defined earlier
in the include file of function object directory or in the file. Line 2 with the ”define” is used
to define the header file ”helicity.H”. In the helicity class declaration section, as the helicity
function object just depends on the field expression, the member function is defined to calculate
the field expression. And this has been set as public.

• The type name to be used to evoke it in the controlDict is mentioned as ”helicity” in the
line 30. Following which, helicity contructor is mentioned. Here one can find that values that
needs to be displayed are significantly mentioned with the location at which the files need to
be saved. As the base class is polymorphic, the virtual destructor has been utilized in the line
45.

18

3.3. COMPILING CHAPTER 3. HELICITY

3.3 Compiling

This section deals with the complete compiling procedure of a custom defined function object for
post processing in OpenFOAM. Here the procedure is based on the helicity function object that is
intended to be performed.

Step 1:

• Since, there might be a good number of dependency files, it’s suggested to create a new folder
named ”helicity” in the function object file of the source folder of OpenFOAM installation.

Step 2:

• The .C and .H files created for helicity are copied in the helicity folder. Also, the Make folder
is copied from an existing one.

Step 3:

• The file named ”file” is opened inside the Make folder. In this document, change the ”exe-
cutable name” to ”helicity”. If one is utilizing the make folder available inside the function
object directory under source directory(field or force directory), it’s sufficient to include a new
executable name for helicity.

helicity/helicity.C // in helicity case

Step 4:

• This step is optional,while this can be beneficial for the ones who have copied the templates
from existing ones. In the .C file created/copied, one can change the application name and the
description in the comment header. This step might be beneficial if this helicity folder files are
used as a template to create your own function objects.

Step 5:

• Copy the .C and .H files that has been created for the new function object into the lnInclude
folder.

Step 6:

• Go to the directory of helicity, i.e, function objects, fields

Step 7:

• In the terminal type:

wclean

Step 8:

• This is an effective step for compiling, as this avoids permission errors. Type :

sudo bash

• Enter your system password. Now one can compile as a super user.

19

3.3. COMPILING CHAPTER 3. HELICITY

Step 9:

• Now, inorder to compile, type:

wmake

Thus we compile all the necessary. Here, one compiles as a super user.

Step 10:

• Inorder to check if OpenFOAM recognizes the function object that we have compiled, type:

helicity -help

The word helicity can be replaced with the user defined function object. To exit the super
user authorization, type:

ls

exit

Thus, our new function object - ”helicity” has be created successfully. And now one can evoke
the helicity function object in the controlDict as,

helicity1

{

type helicity;

libs ("libfieldFunctionObjects.so");

}

Hence on running the simulation, the helicity function object is computed, similar to the other
function objects.

20

3.4. TUTORIAL CHAPTER 3. HELICITY

3.4 Tutorial

3.4.1 Test Case

A new tutorial has been created to evaluate the helicity. The tutorial is based on the damBreak
tutorial case of interFoam solver. It is suggested to follow the steps to create .H and .C files for
helicity using the methodology suggested in the previous sections. And hence this tutorial primarily
demonstrates the evoking the function object (Helicity) created in a test case (damBreak tutorial
case). First copy the tutorial to run folder and rename it as damBreakhelicity :

cp -r $FOAM_TUTORIAL/multiphase/interFoam/RAS/damBreak/

$FOAM_RUN/damBreak_helicity

cd $FOAM_RUN/damBreak_helicity

Since the aim of this tutorial is to showcase the procedure to use helicity function object, the same
application is followed for damBreak-helicity without any change in geometry or physical parameters.

To block Mesh the geometry, type:

blockMesh

Add the following in the system/controlDict and save it.

function

{

helicity1

{

type helicity;

libs ("libfieldFunctionObjects.so");

}

}

It’s sufficient to add the other function objects continuously if needed. (Refer the evoking tutorial)

Ensure to compile the helicity function object before running the case(follow the steps in Section
3.3). And finally to run the case type interFoam

As a result one could see that the results for helicity has been calculated in each time step.

21

Chapter 4

Study Questions

1. What is the necessity of creating new function objects for post-processing, in the due course
of simulation ?

2. What is the ultimate use of the helicity ?

3. Which header file is the most mandatory one in the *.C file created for the function object?

4. How to save the computational time, without compromising on the utilization of the run time
post-processing function objects ?

5. What are the 3 main files that are needed to create a new user-defined function?

6. Name some applications where the helicity function object is of prime importance

22

CHAPTER 4. STUDY QUESTIONS

REFERENCE
1. Skansholm, Jan ”C++ from the Beginning” Pearson Education (2004).

2. OpenFOAM v1706, ”The open source CFD toolbox”.

3. White, Frank M. ”Fluid mechanics. 5th.” Boston: McGraw-Hill Book Company (2003).

23

Chapter 5

APPENDIX

5.1 Helicity.C

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 2014-2016 OpenFOAM Foundation

\\/ M anipulation |

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "helicity.H"

#include "fvcCurl.H"

#include "addToRunTimeSelectionTable.H"

24

5.1. HELICITY.C CHAPTER 5. APPENDIX

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam

{

namespace functionObjects

{

defineTypeNameAndDebug(helicity, 0);

addToRunTimeSelectionTable

(

functionObject,

helicity,

dictionary

);

}

}

// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //

bool Foam::functionObjects::helicity::calc()

{

if (foundObject<volVectorField>(fieldName_))

{

return store

(

resultName_,

fvc::curl(lookupObject<volVectorField>(fieldName_)) &

lookupObject<volVectorField>(fieldName_)

);

}

else

{

return false;

}

return true;

}

25

5.1. HELICITY.C CHAPTER 5. APPENDIX

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::functionObjects::helicity::helicity

(

const word& name,

const Time& runTime,

const dictionary& dict

)

:

fieldExpression(name, runTime, dict, "U")

{

setResultName(typeName, fieldName_);

}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

Foam::functionObjects::helicity::~helicity()

{}

// *** //

26

5.2. HELICITY.H CHAPTER 5. APPENDIX

5.2 Helicity.H

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 2014-2016 OpenFOAM Foundation

\\/ M anipulation | Copyright (C) 2016 OpenCFD Ltd.

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class

Foam::functionObjects::helicity

Group

grpFieldFunctionObjects

Description

Calculates the helicity, dot product the curl of the velocity and velocity.

The field is stored on the mesh database so that it can be retrieved

and used for other applications.

Usage

\verbatim

helicity1

{

type helicity;

libs ("libfieldFunctionObjects.so");

...

}

\endverbatim

27

5.2. HELICITY.H CHAPTER 5. APPENDIX

Where the entries comprise:

\table

Property | Description | Required | Default value

type | Type name: helicity | yes |

U | Name of velocity field | no | U

result | Name of Courant number field | no | \<function name\>

log | Log to standard output | no | yes

\endtable

See also

Foam::functionObjects::fieldExpression

Foam::functionObjects::fvMeshFunctionObject

SourceFiles

helicity.C

---/

#ifndef functionObjects_helicity_H

#define functionObjects_helicity_H

#include "fieldExpression.H"

// * //

namespace Foam

{

namespace functionObjects

{

28

5.2. HELICITY.H CHAPTER 5. APPENDIX

/*---*\

Class helicity Declaration

---/

class helicity

:

public fieldExpression

{

// Private Member Functions

//- Calculate the helicity field and return true if successful

virtual bool calc();

public:

//- Runtime type information

TypeName("helicity");

// Constructors

//- Construct from Time and dictionary

helicity

(

const word& name,

const Time& runTime,

const dictionary& dict

);

//- Destructor

virtual ~helicity();

};

// * //

} // End namespace functionObjects

} // End namespace Foam

// * //

#endif

// *** //

29

