1. Governing idea (one sentence)

Adjust nodal pressures so that the mass imbalance at every node goes to zero,
using how each connected branch flow responds to pressure.

That’s it. Everything below just makes that precise.

2. Network definitions
e Nodes:z=1...NN

e Branch k connects nodes i — j
e Flow sign convention:

Q. > 0 means flow from 7 to j

Branch flow law (generic, nonlinear)

Qr = fir(Apr), Apy =p; — pj — Ap™®
Examples:

e Linear: Q = KAp
 Quadratic: @ = C'sign(Ap) |Ap|

3. Mass imbalance at a node
For node 2:
Ri=) saQi+S;
kei

Where:

e s;z = +1if branch enters node
e s;z = —1 if branch leaves node

e S, = source/sink (fixed inflow/outflow)

Goal:

R, =0 Vi

4. Why pressure correction is needed

You already have a guessed pressure field p;.

Flows computed from it do not satisfy mass balance:
R; #0
So we apply a correction:

new

Y = p; +]

This induces flow corrections Q.

5. Linearizing branch flow (key step)

Forbranch k : ¢ — j:

Define branch conductance

dQy,
d(Ap k) current

2
[

Examples:
« Q=KAp=G=K

[] = = C
Q=C |ppl=G= S

6. Corrected mass balance at node
Corrected imbalance:
R; + R; =

Where:

R = Z 5ir QL
kei
Substitute Q.

> Gr(p — 1)) = —Ri

kei

7. Node-wise pressure correction equation

Rearrange:

Py Gr — Y. Gyp;=-R

kei j€Enbr()

This equation is obtained purely from mass imbalance.

8. Explicit pressure correction (no matrix solve)

If you lag neighbor corrections (Gauss—Seidel style):

—R; + Z Gijp;

1 EGk

kei

This is the explicit pressure update formula you were asking for.

9. Algorithm summary (mass-imbalance solver)
Guess nodal pressures p;

Compute branch flows Qg

Compute node mass imbalance R;

Compute conductances G,

o o nbh =

Update pressures using:
pi < pi + ap;
6. Repeat until |R;| < &
No SIMPLE.

No global Newton matrix.

Only mass balance + local flow sensitivity.

10. Why this works (intuition)

¢ Mass imbalance tells you how wrong the pressure is

e Conductance tells you how much flow reacts to pressure

e The correction redistributes pressure until all imbalances vanish

This is essentially Kirchhoff’s law with nonlinear resistors, solved iteratively.

1. Model assumptions (explicit & simple)

Branch types
s PIPE

A
Ap=RQIQ = Q=sim(dp) 2N

e FAN/ pressure jump

Apan = a + bQ + cQ?

Used inside the branch, not as a node equation.

2. Core data structures

enum BranchType {
PIPE,
FAN

class Node {
int id;
double pressure;
double massImbalance; // R_1i

boolean isReference = false;

class Branch {
int from;
int to;

BranchType type;

// pipe resistance
double R;

// fan coefficients: dp = a + bQ + cQ"2

double a, b, c;

double flow;

double conductance;

3. Branch flow evaluation (with pressure jump)
static void computeBranchFlow(Branch br, Node ni, Node nj) {
double dp = ni.pressure - nj.pressure;
if (br.type == BranchType.PIPE) {

double sign = Math.signum(dp);
br.flow = sign * Math.sqrt(Math.abs(dp) / br.R);

if (br.type == BranchType.FAN) {

// Solve: dp = a + bQ + cQ"2
double A = br.c;

double B br.b;

double C br.a - dp;

double disc =B *B - 4 * A * C;

disc = Math.max(disc, 0.0);

// choose physically consistent root
br.flow = (-B + Math.sqrt(disc)) / (2 * A);

4. Branch conductance (dQ / dAp)

static void computeConductance(Branch br, Node ni, Node nj) {

double dp = ni.pressure - nj.pressure;
double eps = 1le-8;

if (br.type == BranchType.PIPE) {
br.conductance = 1.0 / (2.0 * Math.sqgrt(br.R * Math.max(Math.abs(d

if (br.type == BranchType.FAN) {
// From: dp = a + bQ + cQ"2
// dQ/ddp = 1 / (b + 2cQ)
br.conductance = 1.0 / (br.b + 2.0 * br.c * br.flow);

5. Mass imbalance at nodes (only physics used)
static void computeMassImbalance(Node[] nodes, Branch[] branches) {

for (Node n : nodes) {

n.massImbalance = 0.0;

for (Branch br : branches) {
nodes[br.from].massImbalance -= br.flow;

nodes[br.to].massImbalance += br.flow;

6. Explicit pressure correction update
This is the key formula derived purely from mass balance:

]ﬂ _ -—l%i-+-§£:(;wlé
' > Gir

Implemented explicitly:

static void pressureCorrection(
Node[] nodes,
Branch[] branches,

double relaxation) {

int n = nodes.length;
double[] dp = new double[n];

for (int 1 = 0; 1 < n; i++) {

Node ni = nodes[i];

if (ni.isReference) continue;

double sumG
double rhs

0.0,

-ni.massImbalance;

for (Branch br : branches) {

if (br.from == 1i || br.to == 1) {

int j = (br.from == 1) ? br.to : br.from;

Node nj = nodes[j];

double G = br.conductance;

sumG += G;

rhs += G * dp[j];

dp[i] = rhs / sumG;

for (int i = ©; i < n; i++) {
if (!nodes[i].isReference) {
nodes[i].pressure += relaxation * dp[i];

7. Solver loop (complete algorithm)

static void solve(
Node[] nodes,
Branch[] branches,
int maxIter,
double tol) {

double relax = 0.7;
for (int iter = 0; iter < maxIter; iter++) {
// 1. Compute flows

for (Branch br : branches) {
computeBranchFlow(br, nodes[br.from], nodes[br.to]);

// 2. Conductances
for (Branch br : branches) {
computeConductance(br, nodes[br.from], nodes[br.to]);

// 3. Mass imbalance

computeMassImbalance(nodes, branches);

// 4. Check convergence

double maxR = 0.0;
for (Node n : nodes) {

maxR = Math.max(maxR, Math.abs(n.massImbalance));

if (maxR < tol) {
System.out.println("Converged in " + iter + " iterations");

return;

// 5. Pressure correction

pressureCorrection(nodes, branches, relax);

System.out.println("Did not converge");

8. Why this is not SIMPLE

¢ No guessed velocities
¢ No pressure correction equation from momentum
¢ No matrix solve
e Only:
e nonlinear branch laws
¢ nodal mass imbalance

¢ local linear sensitivity

This is essentially Kirchhoff + nonlinear resistors + pressure sources.

1. CSV formats (simple & explicit)

nodes.csv

id, pressure,isReference
0,0.0, true

1,0.0,false

2,0.0,false

¢ One node must be reference

¢ |Initial pressure is just a guess

branches.csv

from, to, type,R,a,b,c,Qfixed
0,1,PIPE,100.0,0,0,0,0
1,2,FAN,0,50.0,-2.0,0.1,0
2,0,FIXED_FLOW,0,0,0,0,0.25

Interpretation

type meaning

PIPE Ap=RQ

FAN Ap=a+bQ+cQ?

FIXED_FLOW Q = Qfixed (independent of pressure)

2. Branch type extension

enum BranchType {
PIPE,
FAN,
FIXED_FLOW

3. CSV reader utilities

import java.io.*;

import java.util.*;
static Node[] readNodes(String file) throws Exception {

List<Node> list = new ArraylList<>();
BufferedReader br = new BufferedReader(new FileReader(file));
br.readLine(); // header

String line;

while ((line = br.readLine()) != null) {
String[] t = line.split(",");
Node n = new Node();
n.id = Integer.parseInt(t[0]);
n.pressure = Double.parseDouble(t[1]);
n.isReference = Boolean.parseBoolean(t[2]);
list.add(n);

}

br.close();

return list.toArray(new Node[0]);

static Branch[] readBranches(String file) throws Exception {

List<Branch> list = new ArraylList<>();
BufferedReader br = new BufferedReader(new FileReader(file));
br.readLine(); // header

String line;
while ((line

String[]

br.readLine()) !'= null) {
= line.split(",");

+

Branch b

new Branch();

b.from
b.to

Integer.parseInt(t[0]);

Integer.parseInt(t[1]);
BranchType.valueOf(t[2]);

b.type

Double.parseDouble(t[3]);
Double.parseDouble(t[4]);

o))
1

b.b Double.parseDouble(t[5]);
b.c = Double.parseDouble(t[6]);
b.flow = Double.parseDouble(t[7]); // Qfixed for FIXED_FLOW

list.add(b);
}

br.close();

return list.toArray(new Branch[0]);

4. Branch flow computation (updated)

static void computeBranchFlow(Branch br, Node ni, Node nj) {
double dp = ni.pressure - nj.pressure;
switch (br.type) {

case PIPE:
double sign = Math.signum(dp);
br.flow = sign * Math.sqrt(Math.abs(dp) / br.R);

break;

case FAN:
// dp = a + bQ + cQ/2
double A = br.c;
double B br.b;
double C br.a - dp;

double disc = Math.max(B * B - 4 * A * C, 0.0);
br.flow = (-B + Math.sqrt(disc)) / (2 * A);

break;

case FIXED_FLOW:
// flow is prescribed
// positive from -> to
// already stored in br.flow

break;

5. Conductance calculation (important detail)

Fixed-flow branches must not influence pressure correction.

static void computeConductance(Branch br, Node ni, Node nj) {

double dp = ni.pressure - nj.pressure;

double eps = 1le-8;

switch (br.type) {

case PIPE:

br.conductance
1.0 / (2.0 * Math.sqrt(br.R * Math.max(Math.abs(dp), eps))

break;

case FAN:

br.conductance
1.0 / (br.b + 2.0 * br.c * br.flow);

break;

case FIXED_FLOW:
br.conductance = 0.0; // ® critical

break;

6. Mass imbalance (unchanged physics)

Fixed-flow branches contribute directly to imbalance — exactly what we want.
static void computeMassImbalance(Node[] nodes, Branch[] branches) {
for (Node n : nodes) {

n.massImbalance = 0.0;

for (Branch br : branches) {
nodes[br.from].massImbalance -= br.flow;

nodes[br.to].massImbalance += br.flow;

7. Pressure correction (unchanged)

Because G = 0 for fixed-flow branches, they:
o affect Ri

e do not affect pressure coupling

This is mathematically consistent.
static void pressureCorrection(
Node[] nodes,

Branch[] branches,

double relaxation) {

int n = nodes.length;
double[] dp = new double[n];

for (int 1 = 0; 1 < n; i++) {

Node ni = nodes[i];

if (ni.isReference) continue;

double sumG
double rhs

0.0;

-ni.massImbalance;

for (Branch br : branches) {

if (br.conductance == 0.0) continue;

if (br.from == 1i || br.to == 1) {
int j = (br.from == i) ? br.to :
sumG += br.conductance;

rhs += br.conductance * dp[j];

dp[i] = rhs / sumG;

for (int 1 = 0; 1 < n; i++) {

if (!'nodes[i].isReference) {

br.from;

nodes[i].pressure += relaxation * dp[i];

8. Main driver

public static void main(String[] args) throws Exception {

Node[] nodes = readNodes("nodes.csv");

Branch[] branches = readBranches('"branches.csv");
solve(nodes, branches, 5000, 1e-6);

for (Node n : nodes) {
System.out.printf("Node %d : p = %.6f%n", n.id, n.pressure);

9. Why this is correct physics

Feature Treatment

Pipes nonlinear resistance
Fans internal pressure source
Fixed flows pure mass source
Pressure adjusted only to fix mass
Reference removes singularity

This is exactly how industrial HVAC / hydraulic solvers work internally — just without the

matrix machinery.

