
1. Governing idea (one sentence)

That’s it. Everything below just makes that precise.

2. Network definitions

• Nodes:

• Branch connects nodes

• Flow sign convention:

 means flow from to

Branch flow law (generic, nonlinear)

Examples:

• Linear:

• Quadratic:

3. Mass imbalance at a node

For node :

Where:

• if branch enters node

• if branch leaves node

• = source/sink (fixed inflow/outflow)

Goal:

4. Why pressure correction is needed

Adjust nodal pressures so that the mass imbalance at every node goes to zero,

using how each connected branch flow responds to pressure.

i = 1 … N

k i → j

Q >k 0 i j

Q =k f (Δp), Δp =k k k p −i p −j Δpk
jump

Q = KΔp

Q = C sign(Δp) ∣Δp∣

i

R =i s Q +
k∈i

∑ ik k Si

s =ik +1
s =ik −1
Si

R =i 0 ∀i

You already have a guessed pressure field .

Flows computed from it do not satisfy mass balance:

So we apply a correction:

This induces flow corrections .

5. Linearizing branch flow (key step)

For branch :

Define branch conductance

Examples:

•

•

6. Corrected mass balance at node

Corrected imbalance:

Where:

Substitute :

pi

R =i  0

p =i
new p +i pi

′

Qk
′

k : i → j

Q =k
′ (p −

d(Δp)k

dQk
i
′ p)j

′

G =k
d(Δp)k

dQk

current

Q = KΔp ⇒ G = K

Q = C ⇒∣Δp∣ G =
2 ∣Δp∣

C

R +i R =i
′ 0

R =i
′ s Q

k∈i

∑ ik k
′

Qk
′

G (p −
k∈i

∑ k i
′ p) =j

′ −Ri

7. Node-wise pressure correction equation

Rearrange:

This equation is obtained purely from mass imbalance.

8. Explicit pressure correction (no matrix solve)

If you lag neighbor corrections (Gauss–Seidel style):

This is the explicit pressure update formula you were asking for.

9. Algorithm summary (mass-imbalance solver)

1. Guess nodal pressures

2. Compute branch flows

3. Compute node mass imbalance

4. Compute conductances

5. Update pressures using:

6. Repeat until

No SIMPLE.

No global Newton matrix.

Only mass balance + local flow sensitivity.

10. Why this works (intuition)

• Mass imbalance tells you how wrong the pressure is

p G − G p = −Ri
′

k∈i

∑ k

j∈nbr(i)

∑ ij j
′

i

p =i
′

G
k∈i

∑ k

−R + G pi
j

∑ ij j
′

pi

Qk

Ri

Gk

p ←i p +i αpi
′

∣R ∣ <i ε

• Conductance tells you how much flow reacts to pressure

• The correction redistributes pressure until all imbalances vanish

This is essentially Kirchhoff’s law with nonlinear resistors, solved iteratively.

1. Model assumptions (explicit & simple)

Branch types

• PIPE

• FAN / pressure jump

Used inside the branch, not as a node equation.

2. Core data structures

Δp = RQ∣Q∣ ⇒ Q = sign(Δp)
R

∣Δp∣

Δp =fan a + bQ + cQ2

3. Branch flow evaluation (with pressure jump)

enum BranchType {

 PIPE,

 FAN

}

class Node {

int id;

double pressure;

double massImbalance; // R_i

boolean isReference = false;

}

class Branch {

int from;

int to;

 BranchType type;

// pipe resistance

double R;

// fan coefficients: dp = a + bQ + cQ^2

double a, b, c;

double flow;

double conductance;

}

static void computeBranchFlow(Branch br, Node ni, Node nj) {

double dp = ni.pressure - nj.pressure;

if (br.type == BranchType.PIPE) {

double sign = Math.signum(dp);

 br.flow = sign * Math.sqrt(Math.abs(dp) / br.R);

 }

if (br.type == BranchType.FAN) {

4. Branch conductance (dQ / dΔp)

5. Mass imbalance at nodes (only physics used)

// Solve: dp = a + bQ + cQ^2

double A = br.c;

double B = br.b;

double C = br.a - dp;

double disc = B * B - 4 * A * C;

 disc = Math.max(disc, 0.0);

// choose physically consistent root

 br.flow = (-B + Math.sqrt(disc)) / (2 * A);

 }

}

static void computeConductance(Branch br, Node ni, Node nj) {

double dp = ni.pressure - nj.pressure;

double eps = 1e-8;

if (br.type == BranchType.PIPE) {

 br.conductance = 1.0 / (2.0 * Math.sqrt(br.R * Math.max(Math.abs(dp), eps)));

 }

if (br.type == BranchType.FAN) {

// From: dp = a + bQ + cQ^2

// dQ/ddp = 1 / (b + 2cQ)

 br.conductance = 1.0 / (br.b + 2.0 * br.c * br.flow);

 }

}

static void computeMassImbalance(Node[] nodes, Branch[] branches) {

for (Node n : nodes) {

 n.massImbalance = 0.0;

 }

6. Explicit pressure correction update

This is the key formula derived purely from mass balance:

Implemented explicitly:

for (Branch br : branches) {

 nodes[br.from].massImbalance -= br.flow;

 nodes[br.to].massImbalance += br.flow;

 }

}

p =i
′

G∑ ik

−R + G pi ∑ ij j
′

static void pressureCorrection(

 Node[] nodes,

 Branch[] branches,

double relaxation) {

int n = nodes.length;

double[] dp = new double[n];

for (int i = 0; i < n; i++) {

Node ni = nodes[i];

if (ni.isReference) continue;

double sumG = 0.0;

double rhs = -ni.massImbalance;

for (Branch br : branches) {

if (br.from == i || br.to == i) {

int j = (br.from == i) ? br.to : br.from;

Node nj = nodes[j];

double G = br.conductance;

 sumG += G;

7. Solver loop (complete algorithm)

 rhs += G * dp[j];

 }

 }

 dp[i] = rhs / sumG;

 }

for (int i = 0; i < n; i++) {

if (!nodes[i].isReference) {

 nodes[i].pressure += relaxation * dp[i];

 }

 }

}

static void solve(

 Node[] nodes,

 Branch[] branches,

int maxIter,

double tol) {

double relax = 0.7;

for (int iter = 0; iter < maxIter; iter++) {

// 1. Compute flows

for (Branch br : branches) {

 computeBranchFlow(br, nodes[br.from], nodes[br.to]);

 }

// 2. Conductances

for (Branch br : branches) {

 computeConductance(br, nodes[br.from], nodes[br.to]);

 }

// 3. Mass imbalance

 computeMassImbalance(nodes, branches);

// 4. Check convergence

8. Why this is not SIMPLE

• No guessed velocities

• No pressure correction equation from momentum

• No matrix solve

• Only:

• nonlinear branch laws

• nodal mass imbalance

• local linear sensitivity

This is essentially Kirchhoff + nonlinear resistors + pressure sources.

double maxR = 0.0;

for (Node n : nodes) {

 maxR = Math.max(maxR, Math.abs(n.massImbalance));

 }

if (maxR < tol) {

 System.out.println("Converged in " + iter + " iterations");

return;

 }

// 5. Pressure correction

 pressureCorrection(nodes, branches, relax);

 }

 System.out.println("Did not converge");

}

1. CSV formats (simple & explicit)

nodes.csv

• One node must be reference

• Initial pressure is just a guess

branches.csv

Interpretation

type meaning

PIPE Δp = R Q

FAN Δp = a + bQ + cQ²

FIXED_FLOW Q = Qfixed (independent of pressure)

2. Branch type extension

id,pressure,isReference

0,0.0,true

1,0.0,false

2,0.0,false

from,to,type,R,a,b,c,Qfixed

0,1,PIPE,100.0,0,0,0,0

1,2,FAN,0,50.0,-2.0,0.1,0

2,0,FIXED_FLOW,0,0,0,0,0.25

enum BranchType {

 PIPE,

 FAN,

 FIXED_FLOW

}

3. CSV reader utilities

import java.io.*;

import java.util.*;

static Node[] readNodes(String file) throws Exception {

 List<Node> list = new ArrayList<>();

BufferedReader br = new BufferedReader(new FileReader(file));

 br.readLine(); // header

 String line;

while ((line = br.readLine()) != null) {

 String[] t = line.split(",");

Node n = new Node();

 n.id = Integer.parseInt(t[0]);

 n.pressure = Double.parseDouble(t[1]);

 n.isReference = Boolean.parseBoolean(t[2]);

 list.add(n);

 }

 br.close();

return list.toArray(new Node[0]);

}

static Branch[] readBranches(String file) throws Exception {

 List<Branch> list = new ArrayList<>();

BufferedReader br = new BufferedReader(new FileReader(file));

 br.readLine(); // header

 String line;

while ((line = br.readLine()) != null) {

 String[] t = line.split(",");

Branch b = new Branch();

 b.from = Integer.parseInt(t[0]);

 b.to = Integer.parseInt(t[1]);

 b.type = BranchType.valueOf(t[2]);

 b.R = Double.parseDouble(t[3]);

 b.a = Double.parseDouble(t[4]);

4. Branch flow computation (updated)

 b.b = Double.parseDouble(t[5]);

 b.c = Double.parseDouble(t[6]);

 b.flow = Double.parseDouble(t[7]); // Qfixed for FIXED_FLOW

 list.add(b);

 }

 br.close();

return list.toArray(new Branch[0]);

}

5. Conductance calculation (important detail)

Fixed-flow branches must not influence pressure correction.

static void computeBranchFlow(Branch br, Node ni, Node nj) {

double dp = ni.pressure - nj.pressure;

switch (br.type) {

case PIPE:

double sign = Math.signum(dp);

 br.flow = sign * Math.sqrt(Math.abs(dp) / br.R);

break;

case FAN:

// dp = a + bQ + cQ^2

double A = br.c;

double B = br.b;

double C = br.a - dp;

double disc = Math.max(B * B - 4 * A * C, 0.0);

 br.flow = (-B + Math.sqrt(disc)) / (2 * A);

break;

case FIXED_FLOW:

// flow is prescribed

// positive from -> to

// already stored in br.flow

break;

 }

}

6. Mass imbalance (unchanged physics)

Fixed-flow branches contribute directly to imbalance — exactly what we want.

static void computeConductance(Branch br, Node ni, Node nj) {

double dp = ni.pressure - nj.pressure;

double eps = 1e-8;

switch (br.type) {

case PIPE:

 br.conductance =

1.0 / (2.0 * Math.sqrt(br.R * Math.max(Math.abs(dp), eps)));

break;

case FAN:

 br.conductance =

1.0 / (br.b + 2.0 * br.c * br.flow);

break;

case FIXED_FLOW:

 br.conductance = 0.0; // critical

break;

 }

}

static void computeMassImbalance(Node[] nodes, Branch[] branches) {

for (Node n : nodes) {

 n.massImbalance = 0.0;

 }

for (Branch br : branches) {

 nodes[br.from].massImbalance -= br.flow;

 nodes[br.to].massImbalance += br.flow;

 }

}

7. Pressure correction (unchanged)

Because G = 0 for fixed-flow branches, they:

• affect Rᵢ

• do not affect pressure coupling

This is mathematically consistent.

static void pressureCorrection(

 Node[] nodes,

 Branch[] branches,

double relaxation) {

int n = nodes.length;

double[] dp = new double[n];

for (int i = 0; i < n; i++) {

Node ni = nodes[i];

if (ni.isReference) continue;

double sumG = 0.0;

double rhs = -ni.massImbalance;

for (Branch br : branches) {

if (br.conductance == 0.0) continue;

if (br.from == i || br.to == i) {

int j = (br.from == i) ? br.to : br.from;

 sumG += br.conductance;

 rhs += br.conductance * dp[j];

 }

 }

 dp[i] = rhs / sumG;

 }

for (int i = 0; i < n; i++) {

if (!nodes[i].isReference) {

 nodes[i].pressure += relaxation * dp[i];

 }

 }

8. Main driver

9. Why this is correct physics

Feature Treatment

Pipes nonlinear resistance

Fans internal pressure source

Fixed flows pure mass source

Pressure adjusted only to fix mass

Reference removes singularity

This is exactly how industrial HVAC / hydraulic solvers work internally — just without the

matrix machinery.

}

public static void main(String[] args) throws Exception {

 Node[] nodes = readNodes("nodes.csv");

 Branch[] branches = readBranches("branches.csv");

 solve(nodes, branches, 5000, 1e-6);

for (Node n : nodes) {

 System.out.printf("Node %d : p = %.6f%n", n.id, n.pressure);

 }

}

