
OpenFOAM
The OpenFOAM Foundation

Coding Style Guide

Table of Contents

• 1. Code

• 1.1. General

• 1.2. The .H Header Files

• 1.3. The .C Source Files

• 1.4. Coding Practice

• 1.5. Conditional Statements

• 1.6. for and while Loops

• 1.7. forAll, forAllIter, forAllConstIter, etc. loops

• 1.8. Splitting Over Multiple Lines

• 1.8.1. Splitting return type and function name

• 1.8.2. Splitting long lines at an “=”

• 1.9. Maths and Logic

• 2. Documentation

• 2.1. General

• 2.2. Doxygen Special Commands

• 2.3. HTML Special Commands

• 2.4. Documenting Namespaces

• 2.5. Documenting Applications

• 2.6. Orthography

• 2.7. References

1 Code

1.1 General

• 80 character lines max

• The normal indentation is 4 spaces per logical level.

Coding Style Guide | OpenFOAM https://openfoam.org/dev/coding-style-guide/

1 of 15 13/06/25, 08:41

https://openfoam.org/
https://openfoam.org/
https://openfoam.org/
https://openfoam.org/
https://openfoam.org/dev/coding-style-guide/
https://openfoam.org/dev/coding-style-guide/
https://openfoam.org/dev/coding-style-guide/
https://openfoam.org/dev/coding-style-guide/

• Use spaces for indentation, not tab characters.

• Avoid trailing whitespace.

• The body of control statements (eg, if, else, while, etc.). is always delineated with

braces. A possible exception can be

made in conjunction with break or continue as part of a control structure.

• The body of case statements is usually delineated with braces.

• Stream output

• << is always four characters after the start of the stream, so that the << symbols

align, i.e.

Info<< ...

os << ...

so

WarningInFunction

 << "Warning message"

not

WarningInFunction

<< "Warning message"

• Remove unnecessary class section headers, i.e. remove

// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //

// Check

// Edit

// Write

if they contain nothing, even if planned for ‘future use’

• Class titles should be centred

/*---*\

 Class exampleClass Declaration

---/

not

Coding Style Guide | OpenFOAM https://openfoam.org/dev/coding-style-guide/

2 of 15 13/06/25, 08:41

/*---*\

 Class exampleClass Declaration

---/

1.2 The .H Header Files

• Header �le spacing

• Leave two empty lines between sections (as per functions in the .C �le etc.)

• Use //- Comment comments in header �le to add descriptions to class data and

functions do be included in the Doxygen documentation:

• Text on the line starting with //- becomes the Doxygen brief description;

• Text on subsequent lines becomes the Doxygen detailed description e.g.

//- A function which returns a thing

// This is a detailed description of the function

// which processes stuff and returns other stuff

// depending on things.

thing function(stuff1, stuff2);

• List entries start with - or -# for numbered lists but cannot start on the line

immediately below the brief description so

//- Compare triFaces

// Returns:

// - 0: different

// - +1: identical

// - -1: same face, but different orientation

static inline int compare(const triFace&, const triFace&);

or

//- Compare triFaces returning 0, +1 or -1

//

// - 0: different

// - +1: identical

// - -1: same face, but different orientation

static inline int compare(const triFace&, const triFace&);

not

//- Compare triFaces returning 0, +1 or -1

// - 0: different

// - +1: identical

// - -1: same face, but different orientation

static inline int compare(const triFace&, const triFace&);

Coding Style Guide | OpenFOAM https://openfoam.org/dev/coding-style-guide/

3 of 15 13/06/25, 08:41

• List can be nested for example

//- Search for \em name

// in the following hierarchy:

// -# personal settings:

// - ~/.OpenFOAM/\<VERSION\>/

// for version-specific files

// - ~/.OpenFOAM/

// for version-independent files

// -# site-wide settings:

// - $WM_PROJECT_INST_DIR/site/\<VERSION\>

// for version-specific files

// - $WM_PROJECT_INST_DIR/site/

// for version-independent files

// -# shipped settings:

// - $WM_PROJECT_DIR/etc/

//

// \return the full path name or fileName() if the name cannot be found

// Optionally abort if the file cannot be found

fileName findEtcFile(const fileName&, bool mandatory=false);

• For more details see the Doxygen documentation.

• Destructor

• When adding a comment to the destructor use //- and code as a normal function:

//- Destructor

~className();

• Inline functions

• Use inline functions where appropriate in a separate classNameI.H �le. Avoid

cluttering the header �le with function bodies.

1.3 The .C Source Files

• Do not open/close namespaces in a .C �le

• Fully scope the function name, i.e.

Foam::returnType Foam::className::functionName()

not

Coding Style Guide | OpenFOAM https://openfoam.org/dev/coding-style-guide/

4 of 15 13/06/25, 08:41

namespace Foam

{

 ...

 returnType className::functionName()

 ...

}

Exception

When there are multiple levels of namespace, they may be used in the .C �le to avoid

excessive clutter, i.e.

namespace Foam

{

namespace compressible

{

namespace RASModels

{

 ...

} // End namespace RASModels

} // End namespace compressible

} // End namespace Foam

• Use two empty lines between functions

1.4 Coding Practice

• Passing data as arguments or return values:

• Pass bool, label, scalar and other primitive types as copy, anything larger by

reference.

• const

• Use everywhere it is applicable.

• Variable initialisation using

const className& variableName = otherClass.data();

not

const className& variableName(otherClass.data());

• Virtual functions

• If a class is virtual, make all derived classes virtual.

1.5 Conditional Statements

Coding Style Guide | OpenFOAM https://openfoam.org/dev/coding-style-guide/

5 of 15 13/06/25, 08:41

if (condition)

{

 code;

}

OR

if

(

long condition

)

{

 code;

}

not (no space between if and (used)

if(condition)

{

 code;

}

1.6 for and while Loops

for (i = 0; i < maxI; i++)

{

 code;

}

OR

for

(

 i = 0;

 i < maxI;

 i++

)

{

 code;

}

not this (no space between for and (used)

for(i = 0; i < maxI; i++)

Coding Style Guide | OpenFOAM https://openfoam.org/dev/coding-style-guide/

6 of 15 13/06/25, 08:41

{

 code;

}

Note that when indexing through iterators, it is often slightly more ef�cient to use the pre-

increment form. Eg, ++iter instead of iter++

1.7 forAll, forAllIter, forAllConstIter, etc. loops

Like for loops, but

forAll(

not

forAll (

Using the forAllIter and forAllConstIter macros is generally advantageous – less

typing, easier to �nd later. However, since

they are macros, they will fail if the iterated object contains any commas e.g. following will

FAIL!:

forAllIter(HashTable<labelPair, edge, Hash<edge>>, foo, iter)

These convenience macros are also generally avoided in other container classes and

OpenFOAM primitive classes.

1.8 Splitting Over Multiple Lines

1.8.1 Splitting return type and function name

• Split initially after the function return type and left align

• Do not put const onto its own line – use a split to keep it with the function name and

arguments.

const Foam::longReturnTypeName&

Foam::longClassName::longFunctionName const

not

const Foam::longReturnTypeName&

Coding Style Guide | OpenFOAM https://openfoam.org/dev/coding-style-guide/

7 of 15 13/06/25, 08:41

Foam::longClassName::longFunctionName const

nor

const Foam::longReturnTypeName& Foam::longClassName::longFunctionName

const

nor

const Foam::longReturnTypeName& Foam::longClassName::

longFunctionName const

• If it needs to be split again, split at the function name (leaving behind the preceding

scoping =::=s), and again, left align, i.e.

const Foam::longReturnTypeName&

Foam::veryveryveryverylongClassName::

veryveryveryverylongFunctionName const

1.8.2 Splitting long lines at an “=”

Indent after split

variableName =

 longClassName.longFunctionName(longArgument);

OR (where necessary)

variableName =

 longClassName.longFunctionName

 (

 longArgument1,

 longArgument2

);

not

variableName =

longClassName.longFunctionName(longArgument);

nor

variableName = longClassName.longFunctionName

Coding Style Guide | OpenFOAM https://openfoam.org/dev/coding-style-guide/

8 of 15 13/06/25, 08:41

(

 longArgument1,

 longArgument2

);

1.9 Maths and Logic

• Operator spacing

a + b, a - b

a*b, a/b

a & b, a ^ b

a = b, a != b

a < b, a > b, a >= b, a <= b

a || b, a && b

• Splitting formulae over several lines: split and indent as per “splitting long lines at an =”

with the operator on the lower line. Align operator so that �rst variable, function or

bracket on the next line is 4 spaces indented i.e.

variableName =

 a*(a + b)

 *exp(c/d)

 *(k + t);

This is sometimes more legible when surrounded by extra parentheses:

variableName =

(

 a*(a + b)

 *exp(c/d)

 *(k + t)

);

• Splitting logical tests over several lines: outdent the operator so that the next variable to

test is aligned with the four space indentation, i.e.

if

(

 a == true

 && b == c

)

2 Documentation

2.1 General

Coding Style Guide | OpenFOAM https://openfoam.org/dev/coding-style-guide/

9 of 15 13/06/25, 08:41

• For readability in the comment blocks, certain tags are used that are translated by pre-

�ltering the �le before sending it to Doxygen.

• The tags start in column 1, the contents follow on the next lines and indented by 4 spaces.

The �lter removes the leading 4 spaces from the following lines until the next tag that

starts in column 1.

• The ‘Class’ and ‘Description’ tags are the most important ones.

• The �rst paragraph following the ‘Description’ will be used for the brief description, the

remaining paragraphs become the detailed description. For example,

Class

 Foam::myClass

Description

 A class for specifying the documentation style.

 The class is implemented as a set of recommendations that may

 sometimes be useful.

• The class name must be quali�ed by its namespace, otherwise Doxygen will think you are

documenting some other class.

• If you don’t have anything to say about the class (at the moment), use the namespace-

quali�ed class name for the description. This aids with �nding these under-documented

classes later.

Class

 Foam::myUnderDocumentedClass

Description

 Foam::myUnderDocumentedClass

• Use ‘Class’ and ‘Namespace’ tags in the header �les. The Description block then applies to

documenting the class.

• Use ‘InClass’ and ‘InNamespace’ in the source �les. The Description block then applies to

documenting the �le itself.

InClass

 Foam::myClass

Description

 Implements the read and writing of files.

2.2 Doxygen Special Commands

Doxygen has a large number of special commands with a \ pre�x.

Coding Style Guide | OpenFOAM https://openfoam.org/dev/coding-style-guide/

10 of 15 13/06/25, 08:41

Since the �ltering removes the leading spaces within the blocks, the Doxygen commands can be

inserted within the block without problems.

InClass

 Foam::myClass

Description

 Implements the read and writing of files.

 An example input file:

 \verbatim

 patchName

 {

 type myPatchType;

 refValue 100;

 value uniform 1;

 }

 \endverbatim

 Within the implementation, a loop over all patches is done:

 \code

 forAll(patches, patchI)

 {

 ... // some operation

 }

 \endcode

2.3 HTML Special Commands

Since Doxygen also handles HTML tags to a certain extent, the angle brackets need quoting in

the documentation blocks. Non-HTML tags cause Doxygen to complain, but seem to work

anyhow. e.g.,

• The template with type <HR> is a bad example.

• The template with type \<HR\> is a better example.

• The template with type <Type> causes Doxygen to complain about an

unknown html type, but it seems to work okay anyhow.

2.4 Documenting Namespaces

• If namespaces are explicitly declared with the Namespace() macro, they should be

documented there.

• If the namespaces is used to hold sub-models, the namespace can be documented in the

Coding Style Guide | OpenFOAM https://openfoam.org/dev/coding-style-guide/

11 of 15 13/06/25, 08:41

same �le as the class with the model selector. e.g.,

documented namespace 'Foam::functionEntries' within the

class 'Foam::functionEntry'

• If nothing else helps, �nd some sensible header. e.g.,

namespace 'Foam' is documented in the foamVersion.H file

2.5 Documenting Applications

Any number of classes might be de�ned by a particular application, but these classes will not,

however, be available to other parts of OpenFOAM. At the moment, the sole purpose for

running Doxygen on the applications is to extract program usage information for the ‘-doc’

option.

The documentation for a particular application is normally contained within the �rst comment

block in a .C source �le. The solution is this to invoke a special �lter for the “applications/

{solver,utilities}” directories that only allows the initial comment block for the .C �les through.

The layout of the application documentation has not yet been �nalized, but foamToVTK shows

an initial attempt.

2.6 Orthography

Given the origins of OpenFOAM, the British spellings (e.g., neighbour and not neighbor) are

generally favoured.

Both ‘-ize’ and the ‘-ise’ variant are found in the code comments. If used as a variable or class

method name, it is probably better to use ‘-ize’, which is considered the main form by the

Oxford University Press. e.g.,

myClass.initialize()

2.7 References

References provided in the Description section of the class header �les should be

formatted in the APA (American Psychological Association) style e.g. from kEpsilon.H

Description

 Standard k-epsilon turbulence model for incompressible and compressible

 flows including rapid distortion theory (RDT) based compression term.

Coding Style Guide | OpenFOAM https://openfoam.org/dev/coding-style-guide/

12 of 15 13/06/25, 08:41

http://www.apastyle.org/
http://www.apastyle.org/

 Reference:

 \verbatim

 Standard model:

 Launder, B. E., & Spalding, D. B. (1972).

 Lectures in mathematical models of turbulence.

 Launder, B. E., & Spalding, D. B. (1974).

 The numerical computation of turbulent flows.

 Computer methods in applied mechanics and engineering,

 3(2), 269-289.

 For the RDT-based compression term:

 El Tahry, S. H. (1983).

 k-epsilon equation for compressible reciprocating engine flows.

 Journal of Energy, 7(4), 345-353.

 \endverbatim

The APA style is a commonly used standard and references are available in this format from

many sources including Citation Machine and Google Scholar.

Date: 2011-2016

Created: 2016-04-20 Wed 10:24

Coding Style Guide | OpenFOAM https://openfoam.org/dev/coding-style-guide/

13 of 15 13/06/25, 08:41

http://www.citationmachine.net/mla/cite-a-book
http://www.citationmachine.net/mla/cite-a-book
http://scholar.google.com/
http://scholar.google.com/
https://github.com/OpenFOAM
https://github.com/OpenFOAM
https://github.com/OpenFOAM
https://github.com/OpenFOAM
https://twitter.com/CFDfoundation
https://twitter.com/CFDfoundation
https://twitter.com/CFDfoundation
https://twitter.com/CFDfoundation
https://www.linkedin.com/company/9365468
https://www.linkedin.com/company/9365468
https://www.linkedin.com/company/9365468
https://www.linkedin.com/company/9365468

