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PREFACE

Tai1s book has had its origin in the desire of the authors to
" meet the mutual demands of mathematicians and engineers for
a treatment that shall more completely supply the needs of the
technological student. It is believed that this has been done by
enriching the subject with applications to physics and engineering,
in such a way as to increase its value at the same time to the
general student. The present volume is, moreover, based upon
a preliminary edition actually used for several terms in the class-
room.

In view of the peculiar situation of trigonometry in the cur-
riculum, the course has been kept of the usual length. The
topics have been arranged, however, in the order of increasing
difficulty, by postponing the more abstract but no less essential
study of the functions of the general angle, until after the arith-
metical solution of triangles. The abundance of exercises and
problems will give the teacher large opportunity for selection.

The discussion of the slide rule is inserted because of the
increasing employment of this useful instrument.

The authors gratefully acknowledge their indebtedness to
Professor E. J. Townsend and Professor H. L. Rietz, of the
University of Illinois, and Professor A. Ziwet and Professor J. L.
Markley, of the University of Michigan, for valuable criticisms
and suggestions.

ARTHUR G. HALL.

FRED G. FRINK.
AXN ARBOR, January, 1909.
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TRIGONOMETRY

PART 1
PLANE TRIGONOMETRY

CHAPTER 1
GEOMETRIC NOTIONS

1. General statement. It is assumed that the student is well
versed in those theorems of elementary geometry concerning
angles, arcs, and triangles. It is particularly desirable that he
be familiar with the measurement of angles and with the proper-
ties of similar triangles.

While the review thus suggested is left to the student, certain
more advanced geometric ideas are treated in the remaining arti-
cles of this chapter.

Throughout the course the student should make continual,
careful, and intelligent use of such drawing instruments as are
included in the equipment at technical schools. In case such sets
are not available, as in more general classes, there should be pro-
vided at least a straightedge, with graduated scale, a protractor,
and a pair of compasses or dividers.

2. Directed line segments. A point which moves from one
position to a second, without changing its direction of motion,
traces a directed line segment. Directed line segments are always
read with regard to their direction, from the initial extremity to
the terminal extremity.

Two line segments are equal if they have the same length and
direction, whether their lines are coincident or parallel. Either
of two line segments having the same length but opposite direc-
tions is said to be the negative of the other. If one direction is
taken as positive, the opposite direction is negative.

1



2 GEOMETRIC NOTIONS

Thus, in Fig. 1,
A B D C EF=AB,

HK=BA=- AB,
P F K H
o Fie. 1. ' CD=2BA=—2AB.

If A is the initial point and B the terminal point, the line
segment is read A B, and in this notation the positive or negative
direction of the segment is expressed without the aid of a prefixed
+ or —. In case the segment is represented by a single symbol,
as the letter a, the direction must be indicated in some further
manner, a8 by a prefixed 4 or —, or by an arrowhead in the
figure.

Two line segments lying in the same line are added by
placing the initial point of the second upon the terminal point
of the first, each retaining its proper direction. The sum is the
gsegment extending from the initial point of the first to the termi-
nal point of the second. Subtraction is performed by reversing
the direction of the subtrahend and adding. Line segments
having the same or opposite directions may all be transferred
to a common line. Their addition and subtraction thus cor-
respond exactly to the algebraic addition and subtraction of posi-
tive and negative numbers.

If A, B, C denote three points arranged in any order along

a straight line, then
AB+ B(C=AC,

and AB+ BC+ CA=0.

3. Positive and negative angles. If a line rotates (in a plane)
about one of its points, an angle is generated, of which the origi-
nal position of the line is the initial side and the final position the
terminal side. A distinction may be made according as the rota-
tion is clockwise or counter-clockwise about the vertex. The
counter-clockwise direction is chosen as positive. Angles are
always read with regard to their direction of rotation; thus if
0A is the initial side and OB the terminal side, the angle is read
AOB. This notation includes the direction or sign of the angle,
and the + or — should not be prefixed. In case the angle is
represented by a single symbol, as by the Greek letter a, the
direction must be indicated in some further manner, as by a pre-
fixed 4+ or —, or by a curved arrow in the figure.
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Just as with line segments, reversing the direction multiplies
the angle by —1; thus BOA=— AO0B.

Two angles are added by placing them in the same plane with
a common vertex, the initial side of the second coincident with
the terminal side of the first, each retaining its own direction.
The sum is the angle from the initial side of the first to

the terminal side of the second. Subtraction c
is performed by reversing the subtrahend and
adding. B
In Fig. 2,
AOB + BOC=A0C,
A0C—BOC=AOB. ¢ ——y 4
EXERCISE 1

Solve the following problems graphically :

1. On a train running 40 miles an hour, & man walks 4 miles an hour.
Find the speed of the man with reference to the ground, (¢) if he walks
toward the front; (b) if he walks toward the rear of the train.

2. The man’s speed with reference to the ground is 10 miles an hour.
‘What is the speed of the train (a) if he is walking 6 miles an bour toward
the front; () if he is running 8 miles an hour toward the rear?

3. On June 1 the price of corn was 50 cents, and during the succeeding
ten days it fluctuated as follows: rose 2 cts., rose 8, fell 1, fell 2, fell 5, fell 3,
rose 2, rose 2, rose 3, rose 1. Find the price on June 11.

4. During a football game the progress of the ball from the middle of the
field was north 40 yards, south 25, south 5, south 10, south 30, north 50, north
10, north 20. Find the resulting position of the ball.

Combine graphically, using a protractor :

5. 456° + 80°; 90° + 456°; 40° + 85° + 50°.

6. 60° — 45°; 90° — 50°; 180° — 120°,

7. 80° 4 80° 4 56°; 40° + 60° — 30°; 60° — 20° + 70° — 90°.

8. 40° — 70° + 15°; 65° + 156° — 90°; 75° — 180,

4. Rectangular cobrdinates. If two mutually perpendicular
straight lines are chosen, and a positive direction on each, the
position of any point in their plane is determined by giving its
perpendicular distances from these fixed lines. The two lines are
called the axes of codrdinates, and are usually taken so that one
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is horizontal and the other vertical. The point of intersection of
the axes is called the origin. The two determining data for any
point are called its cdordinates. The horizontal distance from the
axis OY to the point is the abscissa of the point, and the vertical
R distance from the axis O.X
to the point is the ordinate

[{ of the point. The point
i
: i

i

i1

/]P, whose abscissa is 2 and
\ ; ordinate y is denoted by

: the notation (z, y). Be-
Jlo i cause it is convenient to lay
. \ | off the abscissa of a point
/ P, upon the axis OX and the
ordinate upon the axis O,
these axes are referred to

Fie. 3. as the axes of abscissas and
ordinates respectively. When z denotes the abscissa and y the
ordinate of the point, the axes may be referred to as the X-axis
and the Y-axis respectively.

The distance from the origin to the point is called the radius
vector of the point. It is known whenever the abscissa and the
ordinate are given, since the three form, respectively, the hypote-
nuse, base, and altitude of a right triangle.

The abscissa of a point should always be read from the Y-axis
to the point. The direction from left to right is chosen as posi-
tive. Therefore all points at the right of the ¥-axis have positive
abscissas, and all points at the left, negative abscissas. The ordi-
nate of a point is always read from the X-axis to the point. The
upward direction is chosen as positive. Hence all points above
the X-axis have positive ordinates, and all points below, negative
ordinates. The radius vector is always read from the origin to
the point, and is always considered positive.

It will be noticed that the abscissa and the ordinate are equal
to the projections of the radius vector on the X-axis and Y-axis,
respectively; these projections will henceforth be used inter-
changeably for the coérdinates themselves.*

* The foot of the perpendicular dropped from a point upon a given line is said to
be the orthogonal or orthographic projection of the point on the line. The projec-
tion of a line segment on a given line is the segment from the projection of the ini-
tial point of the given segment to that of the terminal point. This kind of projec-
tion will be used exclusively throughout this book, unless otherwise expressly
stated.
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The two axes divide the whole plane into four portions, known
a8 the first, second, third, and fourth quadrants, beginning with
the upper right-hand quadrant and AY

. . }
numbering counter-clockwise about
the origin. /A

If two points, P and @, lie in a
line through the origin, their coordi- e
nates, with the radii vectores, form
twosimilar triangles. If the abscissa, /’ ¥i
ordinate, and radius vector of P are o)
z, y, v, respectively, those of @ are
kz, ky, kv. Fio. 4.

EXERCISE i

1. Plot the points (2, 8), (-3, 5), (-2, —4), (1, =8), (3, 0), (0, 4),
(-5, 0), (0, —2), (0, 0).

2. Plot the points (3, 2), (6, 4), (12, 8).

3. Plot the points (0, 5), (4, 3), (-3, 4), (0, —5).

4. Find both graphically and by computation the radius vector of each
point in examples 1, 2, 3. In what quadrant does each point lie ?

5. Describe the location of all points whose abscissas equal 8; whose ordi-
nates equal 5; whose radii vectores equal 8.

6. Write the codrdinates of the vertices of a square of side a, if the axes
of cosrdinates are taken along two sides; along its diagonals.

7. The hour hand of a clock is 5 inches long. Find the cosrdinates of its
tip referred to the horizontal and vertical diameters of its face at three o’clock ;
at six; at eight; at half-past ten.

8. Compare the location of the points (2, 8), (8, 2), (-2, 8), (-2, —8),
(8, —2). Describe the directions of their radii vectores.

9. Find the distance from (2, 5) to (6, 9); from (-3, 2) to (4, 5).

10. Find the direction of the line joining (6, 1) to (8,3); (4,1) to (1, 4);
(6,3)t(1,8); (-2,4) to (1, 1).

11. A man starts from the sonthwest corner of a government township and
goes in turn to the northwest corner of section 86; northwest corner section
22; goutheast corner section 8; northeast corner section 5; thence to the point
of beginning. Show by sketch the shortest route along section lines, and com-
pute the crosscountry distances.

12. A city is laid out in checker-board fashion. The streets are eight to
the mile and look to the cardinal points of the compass. It is proposed to in-
troduce two diagonal (45°) streets extending through the busiest corner to the
outskirts. What distances will be saved thereby in driving from this corner to
each of the points specified below? Nine blocks east and six blocks north;
5W.and78S.; 10 W.and 10 N.; 1 E. and 14 S.

Ly

lm:! —X
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CHAPTER 1II
THE ACUTE ANGLE

5. Purpose of trigonometry. One of the principal objects of
trigonometry is the computation of triangles. We have learned
from elementary geometry that a triangle is determined when we
know any three of its parts (sides and angles), at least one of them
being a side. These data enable us to construct the triangle ; but
elementary geometry does not teach us how to calculate the re-
maining parts. The reason is that sides and angles are expressed
in different units. It is, therefore, desirable to measure angles not
only in degrees, but also by means of lines, or rather by means of
ratio? of lines. This can be done as shown in the following
articles.

6. Definitions of the trigonometric functions. Suppose the

acute angle A OB (= «) to be placed on a system of axes of coor-

dinates with its vertex at the origin and its

initial side OA extending along the X-axis

B toward the right. Its terminal side OB will
fall in the first quadrant. (See Fig. 5.)

v Any point P in its terminal side possesses

one and only one set of related distances

(two coordinates and radius vector).

o= " ty—x Its abscissa z(=OM), its ordinate

y (=MP), and its radius vector

v(=0P) are all positive and con-

Zz + yZ = v’.
The six ratios between these three distances are of frequent

occurrence and prime importance. They serve, indeed, the pur-
pose mentioned in Art. 5, and are given the following names and

1Y

Fia. &.

nected by' the relation

. accompanying abbreviations :

QQ

= gine of « =sina, = cosecant of « = esca,

8

= == ¢osine of « =cos a, = gecant of @ =sec a,

<
VR §le e

Y
x

= tangent of « = tan a, = cotangent of « = cot a.

=]
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7. Relations between the ratios and the angle. The three re-
lated distances of any other point P’ in the terminal side of the
angle « are connected with the determining distances of P by the
relation P

z_Y¥_YV_r
z Yy v

It follows that the values of the six ratios defined in Art. 6 do
not depend at all upon the particular choice of the point in the
terminal side of the angle, but are determined solely and definitely
by the size of the angle. A number that is determined in value
by the value of some other number is said to be a function of that
other number. The six ratios are therefore called trigonometric
Junctions of the angle.

This relation between the ratios and the angle is, moreover, a
mutual one, such that a knowledge of one of the ratios leads to a
knowledge of the angle.* Thus if we have given tan «=§, we
can construct the angle « as follows: On the system of axes OX
and OY plot the point P whose coordinates are (8, 2), using any
convenient scale. Draw the line 04 from the origin through the
point P; then is XOA the required angle «, in consequence of the
definitions of Art. 6.

It appears still further that from the knowledge of any one of
the six trigonometric functions the remaining five can be found.
Thus in the foregoing example we know by the Pythagorean
proposition that on the scale employed the hypotenuse or radius
vector is V94 4 =+v13. We have then at once

sinaz=——21 , tana=§, seca=—;3,

V13

cosa=-3— cot a=§, cse a=\/—1—“i.
3 2 2

The properties and relations of these functions and their more
immediate applications in pure and applied mathematics constitute
the subject-matter of trigonometry. The science takes its name
from its origin in the attempts of the ancient peoples to measure
triangles.

8. Signs and limitations in value. When any acute angle is
placed on the axes of codrdinates in the manner prescribed in

#*This statement, as well as some others in the present chapter, will require
some modification when we extend the consideration to angles greater than 90°,
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Art. 6, its terminal side will always fall in the first quadrant.
The abscissa and ordinate, as well as the radius vector, of every
point in the terminal side will all be positive. It follows that
their ratios, comprising the six trigonometric functions named in
Art. 6, are all positive.

In no case can the abscissa or the ordinate of a point be greater
than the radius vector. Indeed, save in the exceptional cases con-
sidered in Art. 12, they are less than the radius vector. Conse-
quently, sin « and cos ¢ cannot be greater than unity and sec « and
csc « cannot be less than unity.

EXERCISE Ill

By careful construction and measurement find the approximate
values of the following functions:

1. cos 60° 2. tan 80°. 3. csc 45°.
4. cot 35°. 5. sin 20°. 6. sec 50°.

Construct each of the following angles and find by measure-
ment the values of all its functions, given

7. sine=4§. 8. cosa= . 9. tana =gy
10. cot a = . 11. seca =4}, 12. caca=¢}.
13. cosa = §3. 14. sina =¢§}.

15. For what angle is the tangent equal to the cotangent? For what angle
is the sine equal to the cosine ?

16. Show that the direct functions (sin a, tan @, sec &) are greater or less
than the corresponding complementary functions (cos &, cot &, ¢sc a) respec-
tively, according as the augle @ is greater or less than 45°

17. Can sin @ and tan & be equal? When do they approach equality ?

18. Show that tan a . cot & does not depend on . Show that the same is
true of sin @ - csc a.

19. Show that cos & . sec @ does not depend on @ Show the same for
cscla — cot?a.

20. Does sin?a + cos?® ¢ depend on a&? Does sec?a — tan?a?

21. Before reading Art. 11, find the values of the sine, cosine, and tangent
of 30°, 45° and 60°.

9. Fundamental relations. The Pythagorean theorem
23 +,1/2 = v’9
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and the definitions of Art. 6 yield certain fundamental relations
between the six trigonometric functions of a single angle. Thus,
we have directly from the definitions

1

oca= g’ (1)
woa= ®
. U 8
eoto.—ma C))
Again, by division,
tang = -::—:, “@
and cota =209, )
sina

Dividing by v? both members of the equation

y’ + = v”
we have (Z)z + (’;')2 =1,
v v
whence sina +cos’a=1. (6)

Dividing, in like manner, by 2% and by y? respectively, we
obtain
tan%a + 1 =sela, )

cot?a + 1= esca. (8

These eight equations constitute the fundamental relations of
trigonometry. Of these the fifth, seventh, and eighth may be
derived algebraically from the other five. By means of these
equations it is possible to express all six functions in terms of any
one of them. If the value of any one is given, the values of the
others can be found. Simple numerical examples of the latter
kind are more quickly solved by the geometrical method of Art. 7.

ExaMPLE 1. To find the remaining functions of the acute
angle whose tangent is f;.

(1) Geometric Method. The right triangle OMP (Art. 6,
Fig. §) has sides of relative length y =5, z=12, whence on the
same scale v=13. Thus the sine is 4, etc.
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(2) Analytic Method. Given tana=,. Then by the for-
mulas of Art. 9,

1 12, _ _13
cota-tana— 5 seca_m_w, ,
csca=\/1+cot,2a=3;

cos a = 1 =2; sina=L=£.
sece 13 csca 138

EXAMPLE 2. To express all the functions of « in terms of
sece. By the use of the appropriate formulas of Art. 9, we
obtain

. el — 1
. cde—1
cosa=—1—; sxna=\/1—cos2a=ise———’
sec e sec &
csc o eer ta Veecda— 1
= — == = == noa== — 1>
sine Vsecla—1 Secta— 1>
1 1
cote =

tane  +/secia—1
ExaMPLE 3. Verify the following relation by reducing the
first member to the second :
tan? 8
sec8—1
By means of the formulas of Art. 9, we have

—1=secpB.

_tan?B g _sec?B-1_, 1—1=
secB—1 = secB—1 =sech+ =secB.
EXERCISE IV
By means of the formulas of Art. 9, find the values of the
remaining functions of each of the following angles, given
1l sine=¢4% 2. cotB=4§§ 3. cosy=13§ 4. tany=4d8
Express all the functions of « in terms of
8. tana. 6. cosa. 7 cota - 8. sina.

Find the values of the following expressions:

tana 4 cot o 9
9 — T " whencosag = —-
tan @ — cot o’ n « 41

, when sinat = %

10, e a-——_c?sa
tana — sina
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11. 1—+—L + cot 8, when tau _2_0.

12. cos B -tan 8 + sin S8 .cot 8, when sec 8 =

Express the following in terms of a single function :

CSC o

, ———————— in terms of cos &
cot« 4 tan

14, _finB 1+cos B
1+cosﬁ+ oin B in terms of csc 8.

15. secy — tan y in terms of sin y.

1 1

16. — :
l—siny 1l+4siny

in terms of tan y.

Verify the following identities :
17. cost B —sintS=2cos?B - 1.

18. cos - tan & = sin a.

11

cotta _
" Troota o ®
1 1
2. tan’ﬁ+l+cot’ﬁ+ 17 1
b
10. Functions of complementary B
angles. If, in Fig. 6, Z XO0B is ,
constructed equal to ZA40Y, P
XOB (=p8) and X0A4 (= «a) are ” A
complementary.  The triangles v »
OM'P' and OMP are similar, the
pairs of corresponding sides being X
v' and v, 2 and y, ¥’ and z. o« ' T
We have then Fia. 6.
!
sm(90°—a)—smﬁ=‘l,=§=c03a,
co8 (90° — &) = cos 8 §=%=sina,
0° y_z
tan(9 —a)-tanﬁ—;—§=cota,
!
cot(90°—u)=cotﬁ="£, g==t;a.naz,
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!

<2
<

sec(90°—a)=secﬁ=a7=!;=csca,
ano v v
cse (90 —a)=cscﬁ=37,=;=seca.

The prefix “co” is thus seen to be the abbreviation of the
word “complement’s.” The general theorem may be stated as
follows :

Any trigonometric function of an acute angle 8 equal to the
corresponding co-function of ite complementary angle.

Thus, sin 72° = cos 18° cot 54° = tan 86°, etc.

11. Functions of 45°, 30°, 60°. The exact values of the fume-
tions of certain angles are readily found.
@ If, in Fig. 7, £ X0A = 45°, the triangle OMP is isosceles,

Y A4 sothatz=y= Vliv. We have at once

sin 45° = cos 45° = } V2,
tan 45° = cot 45° = 1,
»X
o * sec 45° = csc 45° = /2.
Fre. 7.
(2) If, in Fig. 8, £ X0A4 =30° and

Z X0C is constructed equal to - 30°
the triangle QOP is equilateral, so that

y=3v z=1V3u.
We have, at once,
sin 80° =1, cos 80° =} V3,
tan 80°= } V3, cot 80° = V3,
sec 30°=3V3, csc 80°=2. Fra. 8.
(8) In like manner to (2), or by Art. 10, we obtain
sin 60° =}V3, cos 60° =},
tan 60° = V3, cot 60°=}V3,
sec 60° =2, esc 60° = *-\/B
12. Functions of 0° and 90°.

(1) As the £ X0A (see Fig. 9) decreases so as to approach
the limit zero, the abscissa z will approach equality to the radius
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vector v. If, at the same time, the radius vector remains finite,
the ordinate y will approach the limit zero.

It should be noticed that the cosecant varies in such a manner
that its denominator approaches the limit zero while its numera-

tor remains constantly equal to the

finite number », so that the value Y
of the cosecant increases without
limit as the angle approaches zero.
It is then said to become infinite 4
and is represented by the symbol oo. v £
The cotangent also becomes infinite Y . x
. [0 x M
as the angle approaches zero, since
its numerator, although changing, Fio. 9
never exceeds v. T
We have, then, 8in0°=0, cos0°=1,
4 tan 0°=0, cot 0° =,
4 sec0°=1, csc0°=o0,
F (2) In like manner, we obtain
8in 90° =1, cos 90°=0,
y tan 90°= oo, cot 90° =0,
sec 90° = o0, csc 90° =1.
X od 1
o3 e EXAMI:LE. Solve the equation
secty -~ V3 tany=1.

Fre. 10. Expressing wholly in terms of tan s,
we have tan?y+1—vV3 tany—1=0,
or tan? y — V3 tan ¢ =0,
whence tan y=0 and V3.

Then, by Arts. 11 and 12,

v = 0° and 60°.

EXERCISE V

1. Express in terms of an angle less than 45° the functions of 75°.

2, Express in terms of an angle less than 45° the functions of 65°.
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Verify the following for « = 80°; also for & =45°:
3. 8in 2 @ =2 sin & cos .
4. cos 2 @ =cos?a—sin?a.
2fane
1-—tan%«
cotla—1
2 cot

5 tan2a=

6 cot2a=

Notice that sin 2 & does not equal 2 sin @, cos 8 a does not equal 3 cos a, ete.
Verify for « = 80°:

7. sin8a=38sina—4sinta.
8 cos3a=4cos®a+t 8cosa

Evaluate the following expressions :

9. sin 60° cos 80° — cos 60° sin 80°.

10. cos 60° cos 30° + sin 60° sin 30°.

11. csc? 45° + sin 60° tan 30°.

12. sin 60° tan 45° — sec 30° 8in? 45° cot 60°.

Solve each of the following equations for some one function of
« and find the angle in degrees. Verify the results by substitu-
tion in the given equation,

13. tana — 3cot @ = 0.

14. seca + 2cos = 3.

15. 4sin%a + 3cot?a=4.

16. sina + 3cos @ = 2V2, .

17. A ladder 22 feet long leans against & wall, its foot being 11 feet away
from the wall. Find (a) the angle formed by the ladder with the ground;
(b) the height of the top of the ladder above the ground.

18. The diagonal of a rectangle makes an angle of 30° with the long side.
If the length of this side is 14 inches, what is the length of the short side of
the rectangle ? of the diagonal ?

19. The side of a conical pile of sand makes an angle of 45° with the
floor. If the height from the floor is 12 feet, what is the area of the base?

20. A guy rope (assumed to be straight) has a length of 60 feet and
extends from the top of a mast 30 feet high to the ground. Find the angle
between the rope and the mast.

13. Variation of the trigonometric fﬁnctions as the angle varies.
Suppose the angle @ to vary continuously from 0° to 90°. The
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terminal side revolves about the origin from the position OX to
the position 0Y. If v remains constant, y will increase from 0
to v, while z will decrease from » to 0. Consequently, the nu-

merator of the fmction%(= sin 6) increases from 0 to v, while the

denominator remains constant. Hence, while # increases from
0° to 90°, sin # increases from 0 to 1.

The numerator of the fraction Z( = cos #) decreases from v to
v

0, while the denominator remains constantly equal to ». Hence,
while @ increases from 0° to 90°, cos 8 decreases from 1 to 0.

The numerator of the fraction %(: tan 6) increases from 0 to

v, while the denominator decreases Y
from » to 0. Hence, while 8 in-
creases from 0° to 90° tan 8, be- 4
ginning with zero, increases with- P/
out limit as @ approaches 90° v
We express this by saying that 7
tan @ varies from 0 to . 0 T M X
The student should trace care-
fully the variation of the other Fro. 1.
trigonometric functions and compare the results with the values
found in Arts. 11 and 12. Article 7 should be read again at this

point.

14. Inverse trigonometric functions. The same functional re-
lation is expressed by the two statements, “m is the sine of the
acute angle «” and “« is the acute angle whose sine is m.” The
corresponding symbolic notations are

m = 8in a, « = arcsin m,*

with the understanding that « is an acute angle and that m is a
positive number not greater than unity. A similar symbolic
relation holds for the other trigonometric funetions. It is fre-
quently read ¢“arc-sine m,” or “anti-sine m,” since two mutually
inverse functions are said each to be the anti-function of the other.

# This notation is universally used in Europe and is fast gaining ground in this
country. A less desirable symbol,
o = s8in-1m,
is still found in English and American texts.
The notation & =invsinm is perhape better still on account of its general
applicability. (See Art. 80.)
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The inverse notation is convenient for the statement of prob-
lems. The purposes of interpretation and manipulation are better
served by transforming to the corresponding direct notation.

ExAMPLE. Find the value of sin (90° — arccot ;).

In the direct notation the example reads: Given cote = ¥,
find sin (90° — «). Then, by Arts. 10 and 9,

8in (90° — ) = cos & = .
EXERCISE VI

1. Trace the variation in value of sec 8.

2. Trace the variation in value of csc 6.

Find the values of the following :

3. tan (cos™1 ). 7. sec (90°— arcsec 2).
4. sin (arccot §). 8. csc (90°— arccsc V2).
8. cos (90°— arctan g%). 9. sin (2 tan-11).

6. cot (90°—sin-1}34). 10. cos (2 sin-! {).

Solve the following equations:
11. 2sin®*B+8cos § —3=0.

12. gec 8 — 2tan 8=0.

13. tan 8 (2sin 8 — 1)(sec 8 — v2)=0.
14. sin B (2cos B —v3)(tan B —1)=0.

Verify the identities :

15. sinta + cost & + 8in? ¢ cos? @ = sin* @ — gin?a + 1.
16. (csc & — cot a)(csc @+ cot @) =1.

17. (tan @+ cot a)(sin - cosa) =1,

18. 1—tan*a =2 sec? @ — secta.

19. sin®a + cosf =1 —3sin? a cos?a.

20. cosfa —sinfax =1 —23ginta.

15. Orthogonal projection. In accordance with the definitions
of Art. 4 (see note, page 4) it follows that the projection of a
line segment on any line is equal to the length of the line segment
multiplied by the cosine of the angle formed by the line segment
with the line of projection. Thus, in Fig. 12, the projection of

ABon RS is
MN=AB cos .
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In like manner, the projection of AB on a line perpendicular
to RS (i.e. making 4 90° with RS) has the value AB sina.
These projections are called the components of the
line segment AB along and at right angles B~
to the direction RS. A

In physics, line segments are
often used to represent quanti-
ties that have direction as well as
magnitude; for example, forces,
velocities, accelerations. The components of the line segment
used to represent a force represent components of the force; like-
wise for a line segment representing a velocity, acceleration, or
moment. Suppose, for example, that the line segment 4B, Fig.
13, represents a force applied to the block m resting on a horizon-
tal plane. This segment ha.s the component EB parallel to the

plane and the compo-
4 ¥ nent FB perpendicular
to the plane. Segment
EB represents a force

R M N S
Fig. 12.

F( -------------------- 14 component #, parallel

! to the plane, which

m E X tends to move the block

B E = along the plane; seg-
e ment FB represents a

force component F, per-
pendicular to the plane and tending to produce pressure between
the block and plane. Denoting by F the force represented by
AB, we have
F_ = Fcos e, F,= Fsine.

ExaMPLE. At a given instant a point is moving in a direc-
tion at an angle of 30° with a given horizontal line with a velocity
of 20 feet per second. Find the component of the velocity along
the line.

Taking the given line as the X-axis, we have for the compo-
nent v,

v, =1v cos 80°= 20 x } V8 =1T7.821 feet per second.

The component along a line perpendicular to the given hori-
zontal line in the plane of motion is

v, = v 8in 80°= 20 x } = 10 feet per second.
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EXERCISE VII
The student should draw appropriate figures for each of the following exercises.

1. Find the projections of a line segment 8.5 inches in length on the X-
and Y-axes, (a) when the segment makes an angle of 45° with the X-axis;
(5) when it makes an angle of 60° with the Y-axis.

2. A crank 18 inches long rotates in a vertical plane. When the crank
makes an angle of 30° with the horizontal diameter of the circle described by
the moving end, what is the distance of the moving end, (a) from the hori-
zontal diameter? (b) from the vertical diameter?

3. If in Fig. 13 the force F denoted by A B is 40 pounds, find the compo-
nents F, and F,, (a) when «=30°; (b) when a=45°. Discuss the cases
a =0° and = 90°.

4. A steamer is moving at a speed of 18 miles per hour in a direction
north of east, making an angle of 30° with an east and west line. At what
rate is the steamer sailing eastward ? at what rate northward?

5. A guy wire exerts a pull of 3000 pounds on its anchorage and makes an
angle of 30° with the ground. Find the component of this force, (a) along
the ground; (b) vertical.

6. The eastward and northward components of the velocity of a moving
body are found to be v,= 12 miles per hour and v, = 12 V3 miles per hour, respec-
tively. Find (a) the magnitude and (b) the direction of the body’s velocity.




CHAPTER III
RIGHT TRIANGLES

18. Laws for solution. If, in a right triangle, two independent
parts are known, in addition to the right angle, the three remain-
ing parts can be found. Thus two given parts, at least one of
which is a side, determine a right triangle. The formulas needed
in all cases to effect this solution are
five in number. Two are the state-
ments of well-known geometric theo-
rems, while the other three ‘are the
immediate consequences of the defini-

tions of the trigonometric ratios con- " B

tained in Art. 6. c a
In Fig. 14 let ACB be a right

triangle, right-angled at ¢. We shall 7 y

denote the interior angles at the ver- A b c

tices by «, 8, v, and the lengths of

the sides opposite them by a, b, e

respectively. Note that ¢ = 90°, and ¢ is the hypotenuse.
The five formulas are the following :

Fia. 14.

a*+ B =23, ¢))
a+p =90, &)
‘—'o=slna.=cosp, 3
G=oma=sinf, ®
7 =tana = cot B. (5)

Equation (1) follows from the Pythagorean theorem, and
(2) from the fact that the sum of the angles of a triangle is equal
to two right angles. In order to establish the last three, place
the triangle on the axes of coordinates described in Art. 4, the
side 4 ( extending from the origin to the right along the X-axis,
and the hypotenuse lying in the first quadrant, as in Fig. 14.

19
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Then &, a, ¢, are respectively the abscissa, ordinate, and radius
vector of B, a point on the terminal side of the angle «, which is
conventionally placed.

It follows at once from Art. 6 that

a .
—=gsin a,
c

b

- = o8 &,
¢

a

~=tan a.
b

The corresponding values of the functions of the angle 8 result
from Art. 10.

17. Area of right triangles. The formulas for the area of a
right triangle follow from the familiar geometric theorem

Area =} x base x altitude,

or expressed symbolically,

4=1}ab. ¢))
The substitution for a of its value from the preceding article gives

A=1bcsma. ¢©))
Again, introducing the values of both a and 3,

A=]cAsina-cosa. ¢))

Other formulas for the area may also be obtained.

18. Method of solution. The solution of any problem consists
of four parts: the analysis, the algebraic solution, the arithmetical
computation, and the interpretation of the results.

(1) The student should read and analyze the problem, noting
which parts are known and which are desired. The construction
of a neat and sufficiently accurate figure is helpful and advisable.

(2) The student should select from the five formulas of Art.
16 those containing a single unknown part each, in addition to the
known parts, and should solve them for these unknown parts while
still in the literal form.

Experience has led to the adoption of the following two rules
of procedure:
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(4) The use of the Pythagorean formula, a? + 62 = ¢2, is to be
avoided save when the data are very simple or a table of squares
and square roots is at hand.

(B) So far as is consistent with rule 4, each unknown part
should be found in terms of those parts originally given in the
problem, in order to avoid accumulation of errors.

In conformity with these rules, the angle relation « 4+ 8= 90°,
and two of the three trigonometric formulas serve to effect the
solution, while the remaining trigonometric formula affords a
check on the work.

(8) The solution is now effected by introducing the numerical
data and performing the necessary computations. The correctness
and accuracy of the results are greatly enhanced by extreme order-
liness of arrangement and neatness of detail.

The use of the trigonometric tables and the employment of
suitable checks will be discussed in subsequent articles.

(4) The geometric or physical significance of the results ob-
tained should be fully considered and interpreted.

ExaAMPLE 1. Given ¢ =254, a = 30°, to find «, b, 8.
In this instance the analysis and construction are obvious.
The three appropriate formulas yield at once the forms

B=90°—
a=c¢sina,
b=c¢ccosa.

The formula b =a tan B affords the check.
On introducing the numerical data, we obtain
B=190° —30° =60
a=2564 x} =2564x.6=127,
b =254 x }V3 =254 x .86605 = 219.9767.

The check formula gives
b=12T x 1.7821 = 219.9767.

ExaMPLE 2. Given a=89.00, b =80.00, to find ¢, «, 8, and
the area.

As before, we may pass immediately to the second stage. Now
¢ is given directly in terms of @ and b by the formula ¢= Va? + 82.
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If we are to avoid the use of this formula, we must first find « and
B, and then get ¢ by means of one of these angles. We use the
forms:

tan = % ’
B=90°—a,
a
C=— ]
sin &
A=1}ab,
and for the check c= ,b .
. sin 8
We obtain, then tan « = 89 + 80 = .4875,

o= 25° 59', as found from Table III,
B =90°—26° 59 = 64° 01',
=89 + .4381 = 89.01,
A=1 x 39 x 80 =1560,
and for the check ¢ = 80 -+ .8989 = 89.00,

showing a difference of .01.

On account of the simplicity of the numbers, we may, by using
the formula ¢ = a3 4 83, find, exactly, c= 89.

Explain the accumulation of errors and, hence, the reason for
rule of procedure (B).

ExAMPLES. 1. Given ¢=42, 8 =arcsin .28; find ¢ and 3.
2. Given 5=27, a=tan"1.75; find @ and e.

3. Given a=300, ¢ =cos~! .45; find ¢ and &.

4. Given ¢= 200, a=arccot 1.12; find a and b.

19. Trigonometric tables. In the first example worked in the
preceding article, the functions of 30° had been determined in
Art. 11. In the second example, however, the value of tan « was
not one of those previously ascertained, and the value of « was not
recognizable from its tangent. For convenience of reference the
numerical values of the sines, cosines, tangents, and cotangents of
all angles differing by intervals of one minute from 0° to 90° have
been collected in Table III, on pages 71-89. The arrangement is
simple and plain. The degree numbers from 0° to 44° occur at the
top of the page, with the minutes running down the left margin.
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The numerical values of the functions, computed to four decimal
places, are placed in columns under the names of the functions.

Since sin (90° — ¢) = cos , and tan (90° — a) = cot «, the space
required may be reduced one half. The degree numbers of angles
from 45° to 90° are printed at the bottom of the pages in reversed
order, the minutes run up the right margin, and the names of the
functions are in reversed order at the bottom. .

For the present the student need not concern himself with
smaller divisions of the angle than the minute. Further refine-
ment is attained by a method to be described in Art. 26.

Table IV, on pages 91-93, contains the squares of numbers less
than 1000 and, by interpolation, of numbers up to 9999. The
first page gives directly the squares of numbers from 1 to 100.
On the second and third pages the tens and units digits of the
number to be squared are in the left margin, while the hundreds
digits are at the tops of the several columns. The last two figures
of the square are in the column at the right under U., opposite
the tens and units digits; the first three, or four, figures of the
square are in the same line in the column under the hundreds
digit. In the right margin are the last two figures of the tabular
difference used in interpolation, to which must be prefixed the
remainder obtained by subtracting the first three, or four, figures
of the square from those in the same column immediately beneath,
or that remainder diminished by 1 when the asterisk (*) is present.
The use of the table is best shown by illustration.

ExAMPLES. 1. 328%=107,584.
2. 475.3=4752+ .8 x 951 = 225,625 + 285 = 225,910.*
3. 28.8373=28.824- .07 x 567 = 800.89 4 3.97 = 804.56.

Square roots are extracted by reversing the process; thus,

4. V275656 = 166.
5. V658,037 =V657,721 + 816 + 1623 = 811 4+ .2 = 811.2.

20. Errors and checks. The results obtained are not always,
nor even usually, exactly correct. The deviations from the true
values are of two sorts, mistakes and errors, and a sharp distine-
tion must be made between them.

® This result is, of course, only approximately correct. The true result may be

obtained as follows :
476.8% = 4763 + .8 x (476.8 + 475) = 225,625 4 285.09 = 225,910.09.
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The data for problems arising in actual practice are derived
from observations made with instruments for measuring lengths,
angles, ete.

Mistakes may arise from a false reading of the observing instru-
ment, a misapprehension of the problem, the employment of the
wrong formula, faulty addition, etc. They are never allowable or
excusable.

On the other hand, instruments are so constructed as to yield
results only to a certain degree of precision, which should be
ascertained for each instrument. Moreover, observation is per-
formed by the human apparatus, eyes, ears, etc., and a certain per-
sonal equation, an anticipation or lagging in sight or hearing, is
always present, varying with personal fitness and experience.
Methods of eliminating instrumental errors, so as to obtain the
maximum precision possible with the instruments used, are given
in standard works on engineering instruments. Again, the arith-
metical calculation involves the trigonometric ratios, which are, in
general, non-terminating decimal fractions, while their values in
the mathematical tables are computed only to a certain number of
decimal places. Errors, therefore, will always be present; but
every precaution should be taken to keep the errors due to com-
putation well within the limits of error of the observed data and
desired results fixed by the nature of the problem.

In both observation and solution, certain additional processes
are employed to avoid, or to reveal, mistakes. These processes
are known as checks and vary with the nature of the problem.

While no general rules for checks can be laid down, a frequent
practice in the solution of triangles is to make use of a formula
connecting the required parts, just found, noting if the results are
within the range of allowable error. The size of this allowable
error should be known for each table.

As a check to arithmetical computation, graphical construction
is well understood and strongly advised. As a means of avoiding
the grosser mistakes, a free-hand sketch will frequently suffice by
guiding the student to a reasonable interpretation of data, and
indicating possible results.

A drawing constructed to scale will further aid by yielding
values more or less approximate, approaching those obtained by
computation.

Carried a step farther as regards accuracy, by the use of pre-
cise instruments, the graphical construction often attains to the
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dignity of an independent solution, with results falling within the
limits prescribed by the physical conditions of the problem.

There is no better evidence of careful work than the record-
ing of a reasonable error obtained by the comparison of two
methods. In practical work the allowable per cent of error
becomes an important consideration.

EXERCISE Vil

Find the missing parts of the following triangles, using the
natural trigonometric functions, Table III.

a B l a b ° A

1. 25° 10/ 34

2, 52° 20" 73

3. 81°15" 243

4. 78° 35/ 521

5. 21° 25 235

6. 72° 45’ 720

7. 80° 30 1200

8. 17° 30 1500

9. 240 360
10. 381 715
11. 521 630
12. 840 1400
13. 648 864
14. 599 600
15, 215 385
16. 2111 1234
17. 95 - 7980
18, 264 30360
19. 74° 20/ 1225
20. 24° 50’ 843

21. In the same vertical plane the distances shown in Fig. 15 were meas-
ured in feet along the surface of
the ground. The distances of the
different points below the instru-
ment, a8 measured by a rod, are
given also in feet. The vertical
scale is exaggerated for clearness.
What is the horizontal distance
from B to G? (Check by a table of squares and square roots.)
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22. A line surveyed across a ridge is 1500 feet in horizontal length.
Stakes are set 100 feet apart horizontally by level chaining. By leveling, the
elevations of the surface at the different stakes is obtained as follows: 730.2,
735.9, 789.7, 743.4, 750.1, 751.8, 760.7, 764.1, 764.8, 765.8, 765.0, 763.2, 758.3,
750.2, 743.1, 740.2. What length of wire will be required for fencing along
this line? (Check by a table of squares and square roots.)

23. If a gravel roof slopes one half inch to the horizontal foot, what angle
does it make with the horizon?

24. If the face of a wall has a batter or inclination of one inch in one ver-
tical foot, what is its angle with the vertical ?

25. What is the angle of ascent of a railway built on a 2 per cent grade
(i.e. 2 vertical feet to 100 horizontal feet)?

c 26. The pitch of a roof is the ratio
A\ %’ (See Fig. 16.) What is the in-
A s B clination to.the horizon of a roof with
D } pitch, } pitch, § pitch?

Fia. 16. 27. What is the pitch of a roof slop-

ing to the horizon at 15°, 30°, 45°?
28. What is the inclination to the horizon of the corner or hip rafter of a
pyramnidal roof whose pitches are §?

29. What is the inclination from the vertical of the corner edge of a wall,
both of its faces having a batter of \;?

30. At what angle does a railway slope if it has a grade of 0.259, 0.5%,
2.59%%

31. At what angle must a cog railway ascend in order to rise 2640 feet in
one horizontal mile ?

32. A battleship known to be 341 feet long subtends an angle of 3°2(¢/
when presenting its broadside to a fort on shore. For what distance should
guna be sighted when trained upon it? (Note that the isosceles triangle hav-
ing the length of the ship for its base is separable into two right triangles.)

33, In planning the stairway for a house it is desired that the riser, or
vertical distance between steps, shall be 7 inches, and the treads, or horizontal
distances between faces, 11 inches. What will be the angle of inclination of
the hand rail?

34. Taking the data of the preceding problem, what will be the length of
the hand rail if straight, provided the height between floors is 11 feet 8 inches?

35. A cylindrical water tower whose external diameter is 25 feet subtends
a horizontal angle of 5°30' as viewed from a distance. How far is its center
from the instrument?

(Note that we have a triangle that is right-angled when the line of sight
is tangent. The base is the radius of the tower and the opposite angle is half
of the one observed.)
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36. What horizontal angle would be subtended, at a distance of 2 miles,
by a vertical cylindrical gas receiver 60 feet in diameter?
(See note to problem 385.)

37. The end of a pendulum 34 inches long swings through an arc of 8} inches.
Find the angle through which the pendulum swings.

88. When vertically over a village, a balloon’s angle of inclination, as
viewed from 9 miles distant, was 15°20'. Assuming the surface of the country
to be fairly level, what was the height of the balloon?

39. A flagstaff 110 feet high is covered by a vertical angle of 12°30 at a
point approximately on a level with its center. How far is the observer from
the staff ?

40. The data of a preliminary survey are as follows:

AB = 240.9 feet. Angle at B = 62° 11/ left.
BC = 810.7 feet. Angle at C = 55° 50/ left.
CD = 611.5 feet. Angle at D = 43° 42/ right.
DE =2372 feet. Angle at E = 51° 29/ right.

EF = 528.0 feet.

Considering 4, Fig. 17, as the
origin of codrdinates and AB as
the axis of abscissas, it is required
to compute codrdinates for all
points given, thus providing for
the accurate mapping of the
sarvey.

41. Find the missing parts C
and area of the following isos-
celes triangles (see Fig. 18 for
lettering) : Fia. 17.

@ =35°, a=42; a="72° h=125;
a=350, b=180; f=>5%,a=360;
B=51°26/, b=480;  a=640, b= 840.

42. Find the lengths of the chords of the follow-

b ing arcs in terms of the radius: 30°, 36°, 40°, 45°, 60°,
Fia. 18. 75°% 90°, 120°. Compute, given R = 100.

43. Express in terms of the sine and radius the relation between the chord
of an arc and the chord of half the arec.

44. Express in trigonometric form the most important relations between
the radius R of the circumscribed circle, the radius r of the inscribed circle, and
the side # of a regular polygon of n sides.
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45. Compute and tabulate the perimeter and the circumferences of the
circum- and in-circles of a regular polygon of n sides for n = 4, 8, 16, 32, given
R =10.

46. Compute and tabulate the area of a regular polygon of n sides and of
its circum- and in-circles for n = 4, 8, 16, 32, given R = 10.

47. Repeat example 45 for n = 6, 12, 24, 48.
48. Repeat example 46 for n = 6, 12, 24, 48, .

49. A body is acted upon by three forces of magnitudes 20, 40, 60, parallel
to the sides of an equilateral triangle. Resolve these forces along two perpen-
dicular axes, then combine, and thus find the magnitude and direction of the
resultant.

50. A body situated at one vertex of a regular hexagon is acted upon by
five forces represented in magnitude and direction by the vectors drawn to the
five other vertices. Resolve along and perpendicular to the diameter through
the point and find the magnitude and direction of the resultant.

51. A point describes a circle with uniform speed. Determine the position
of its projection upon a diameter in terms of its angular displacement from that
diameter.

52. A point describes a circle of radius 30 feet at a rate of 3 revolutions
per minute. Find the position of its projection upon a diameter at the end of
15 seconds after passing the extremity of that diameter.

53. Determine the components of the vertical acceleration g along and
perpendicular to a plane inclined at an angle « to the horizon.

54. If g = 82, find the acceleration along and perpendicular to a plane
whose inclination is 30°, 15°, 10°, 5°.

55. A man weighing 150 pounds stands midway on a 80-foot ladder whose
foot is 10 feet horizontally from the vertical wall against which it leans.
Find the normal (perpendicular) pressure on the ladder and the force tending
to cause him to slide along the ladder.

56. Find the components along the X- and Y-axes of a force of 65 pounds
making an angle of 28° 13’ with the X-axis.

57. A steamer is sailing in such a way that its speed due east is 12 miles
per hour and its speed due south is 14 miles per hour. Find the direction of
the steamer’s course and the speed in that course.

58. In an oblique triangle, angle B =45° angle C =32° and side b =186.
Find side c. (SueeesTioN. Draw the perpendicular from the vertex 4 upon
the opposite side.) Attempt to deduce a general relation between the func-
tions of the acute angles of an oblique triangle and the opposite sides.




CHAPTER IV
LOGARITHMS

21. Definition of a logarithm. If we have given
56 = 10074818, TQ — 105768,

we can find the product of 56 and 79 without performing the
operation of multiplication, provided we know in advance the
powers of 10. For, we have from the general laws governing
exponents,

56 x T9 = 10074819 » 7 (089768

== 1074819 + 080768

= 10164683 — 4424,

It will be seen that the process of multiplication has been replaced
by the simpler one of addition.

Many other processes in computation can be simplified in a
similar manner; for example, if we wish to find the cube root of
a number, say 89.1, we have

89.1 = 10194888,
and consequently

V891 = (1019888t — 1006499 — 4, 466+,

In this case the extraction of a root has been accomplished by the
simple process of division. In order to extend this method we
must know all of the powers of some convenient number. The
exponents involved are called logarithms, and the number raised
to a power i referred to as the base of the logarithmic system.
We may define a logarithm more exactly as follows:

If a is any number and z and n are so related that a® = n, then
z is called the logarithm of n to the base a; that is, a logarithm is
the index of the power to which the base must be raised to obtain
the given number.

This relation is denoted symbolically by writing

z = log, n,

and is read “z is equal to the logarithm of n to the base a.”
29
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Thus 8 is the logarithm of 8 to the base 2, since 28 =8; and
in the illustrations given above, 0.74819 is the logarithm of 66 to
the base 10, etc.

The two statements

a®=n, z=log,n

are inverse to each other, just as are the relations sin z and
arcsin z, etc., of Art. 14.

Exercise. Find by inspéction logy27, log,.625, log, 82,
log, .04.

The logarithm of a number to itself as buse is unity, since n! =x.

The logarithm of 1 to any base other than zero is zero, since
a®=1.

In conformity with the definition just laid down, it follows that,
if two numbers are equal, their logarithms to the same base are
equal. It is also true conversely, that if the logarithms of two
numbers to the same base are equal, the numbers are equal.*

If the base is real and positive, real logarithms produce only
positive numbers. If the base is real and negative, even loga-
rithms produce positive numbers ; odd logarithms, negative num-
bers. For this reason only real positive bases are chosen in prac-
tice, and only positive numbers are combined by the aid of their
logarithms. The sign of the result is ascertained entirely apart
from the numerical computation.

22. Laws of combination. Logarithms are important in trigo-
nometry and elsewhere as labor-saving devices in calculations with
numbers containing many digits. Only so much of the theory of
logarithms as is necessary for this purpose will be developed in the
present chapter.

The laws of combination of numbers by the aid of their loga-
rithms follow at once from the definition of the preceding
article.

I. The logarithm of the product of two factors s equal to the sum
of their logarithms, all to the same base.

For, if z=1og,n and y = log, m we may write
n=a* and m=av.

* In the theory of analytic functions a broader definition of the logarithm is laid
down, and the statement just made requires modification.
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Multiplying, we have, by the exponential law,
nm = a**?,
whence, loganm =z + y =log, » + log, m. (¢Y)

This law may evidently be extended to any finite number of
factors.

I1. The logarithm of the quotient is equal to the logarithm of the
dividend minus the logarithm of the divisor, all to the same base.

For, if z=1o0g,n and y =log, m, we may write as before,
n=a*, m=av.
Dividing, we have 7—"1‘= a,

whence, log, (1%) =z —y=logsn—log, m. @

Manifestly log, <1%z) = — log, m.

III. The logarithm of the power of a number ¢s equal to the loga-
rithm of the number multiplied by the index of the power.

For, if z=1log,n, then n=a".
Hence, n? = (a*)? = a?*
or, log, (n?) = pr=plogsn. 3

IV. The logarithm of the root of a number s equal to the loga-
rithm of the number divided by the index of the root.

For, if z=1log,n, then n=a*. Extracting the ¢gth root of both
members, we get

Yn=ai,
whence, log,{/n= 3 = é log, n. @

23. Common logarithms. Any number may be used as a base
of a system of logarithms. For certain purposes the so-called
natural system of logarithms, which has for its base the number
e= 2.7T1828183 ..., has advantages. For the purposes of ordinary
numerical computation, however, it is most convenient to employ
for the base of the system of logarithms, 10, the base of the
universally adopted system of numeration.
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The common logarithms of all exact integral powers of 10 are
positive integers; for instance

log,, (1000000) = log,, (108)
= 6 log,, 10
=6.
The logarithms of reciprocals of integral powers of 10 are
negative integers; thus

log,, (.00001) = log,, (10-5)
= — 5log,, 10
= — 5.

The logarithms of numbers situated between two consecutive
integral powers of 10, say between 10* and 10**1, lie between &
and k£ + 1, where k is any integer, positive or negative. Thus

. 102 < 2417 < 104,
whence, 8 <log,, 2417 < 4,
or, log,, 2417 = 8 + a number lying between 0 and 1.

The logarithms of numbers greater than the base consist of an
integer plus a proper fraction. The fractional part is written
decimally, calculated to a number of decimal places, depending
on the degree of accuracy desired in the use of the table. The
integral part of the logarithm is called the characteristic; the
decimal fraction, its mantissa. ]

Hereafter, in this book, except in Chapter IX, we shall have
to do only with common logarithms and, unless otherwise expressly
stated, log » will denote log,, .

24. Characteristic. If one number is equal to another number
multiplied by a factor which is a power of 10, the logarithms of
the two numbers differ by an integer. For

log (10* x n) =log (10*) 4+ log n
=k + log n.
ExaMpLE. log 34000 = 3 + log 34
= 4 + log 3.4, ete.

Every number containing one digit at the left of the decimal
point lies between 10° and 101. The characteristic of its logarithin
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is therefore 0. The cipher should always be written to indicate
that the characteristic has not been overlooked.

Every number containing & digits at the left of the decimal
point is 10! times a number with one digit at the left. The
characteristic is therefore #—1. We have then the following
rule for the characteristic :

The characteristic of the logarithm of any number greater than
unity i8 one less than the number of digits at the left of the decimal
point.

Should the number be less than unity, move the decimal point
ten places to the right (thus multiplying by 101%) and apply the
same rule as before, then write — 10 after the logarithm for
correction. Thus

log 7.12 = 0.85248,

log 71200 = log (104 x 7.12)
= 4.85248,

log .00712 = log (10-1° x 71200000)
= log (10~ x 107 x 7.12)
= 7.85248 — 10.

The positive part of the last characteristic is seen to be the
difference found by subtracting from 9 the number of ciphers
immediately following the decimal point in the number.

The characteristic of the logarithm of any number less than unity
i¢ found by subtracting from 9 the number of ciphers between the
decimal point and the first significant digit, then affixzing — 10.

25. Mantissa. We have seen that moving the decimal point
in the number merely changes the characteristic of the logarithm,
leaving its mantissa unaltered. The mantissa depends solely upon
the sequence of significant digits.

In the tables given, the logarithms are computed to five deci-
mal places (see pp. 1-21), and the mantissas alone for all numbers
from 100 to 9999 are given, arranged in the following manner:
Running down the left margin, under XV, are to be found the
first three digits of the number. In the next (open) column
occur the first two figures of the mantissa. In the next ten
columns are the remaining three figures of the mantissa arranged
under the fourth digit of the number at the top of the columns.
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Thus to find the mantissa of log 8814, we select the row having
881 in the left margin. The first two figures of the mantissa, 58,
are found in the first column. The three remaining figures, 188,
are found in the column headed 4, the fourth digit of the number,
giving the mantissa .58138.

To avoid repetition, the first two figures, 58, are not printed in
every line, but are to be used from 8802 to 8890, inclusive. The
prefixed asterisk, *006, denotes that the mantissa of 8891 is .59006,
not .58006.

EXERCISE IX
1. Find by inspection log, 16, log, 27, log, ¢.
2. Find by inspection log, 81, log, 32, log,, 9.

3. What numbers correspond to the following logarithms to base 4: 0, 1,
2,258, —2, — 382

4. What numbers correspond to the following logarithms to base 8 0,
1) 1}7 - iv —2?

5. Find by logarithms: (a) 693 0872 x 144

1467 ® 778
6. Find (a) V793; (b) V.007; (c) VAL
7. Find ’18 X \/.2—40 x 758
72 x V640 x 200
o
8. Find (32X V7N x 15 15‘)’.
72 x V480 x 243

a-1

9. Find (“o‘) , where k = 141,

10. Solve for z: 4= = 24,
11. Solve for z: 6= = 25.

The amount A4 attained by a principal P at interest at the rate r com-
pounded annually for n years is

A=P(4+r)m
12. Find the amount of $ 3680 at 4 per cent in 6 years.
13. Find the principal which, in 7 years at 5 per cent, amounts to & 5820.
14. At what rate will $ 5000 amount to $7500 in 8 years ?
15. In how many years will $86,500 amount to § 129,800 at 8} per cent ?
16. If a city increases its population } each year, in how many years will
it double its size?
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26. Interpolation. It will be shown in Art. 79 that the differ-
ence in the logarithms of two numbers is approximately propor-
tional to the difference in the numbers provided these differ-
ences are small. Thus, approximately,

log 51478 — log 51470 _ 51478 — 51470 _ 8
log 51480 —log 51470 51480 — 51470 10

We have, then,
log 51478 = log 51470 + 5 (log 51480 — log 51470).
Introducing the values from Table I,
log 61478 = 4.71155 + £;(4.71164 — 4.71155)
= 4.71155 4 .8 x .00009
=4.71155 + .00003
= 4.71158.

The difference .00009, or omitting the denominator, the 9 is
called the tabular difference corresponding to the logarithm of
5147. Note that the added difference is computed to the nearest
fifth decimal place.

This process is called interpolation by the principle of pro-
portional parts. To facilitate interpolation, tables of proportional
parts are inserted in the logarithmic tables in the column headed
P.P. At the top of each of the P.P. tables is the tabular differ-
ence and under this is the number to be added corresponding to
the digit at the left. For example

log 38.25 = 1.58263

log 88.26 = 1.58274.
The difference is .00011 and in the P.P. column is a table
headed 11. Suppose now that log 88.257 is required. Opposite

7 under 11 is found 7.7 ; hence 8 is to be added in the fifth deci-
mal place, giving

log 38.257 = 1.58271.

27. Numbers from given logarithms. The inverse process of
finding the number corresponding to a given logarithm is best
explained by an illustration. Given the logarithm 3.84235. Only
the mantissa need be considered at first, as the characteristic
merely determines the position of the decimal point in the numnber.
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Looking for 84 in the first column after the margin, we find it
corresponding to numbers from 692 to 707. The nearest tabular
number (mantissa) smaller than 285 is 280, corresponding to the
number 6955. The difference is 5, while the tabular difference,
* found by subtracting 280 from 236, is 6. We have now the pro-
portion for the next digit,

n
10 6’

so that the next digit is found by dividing .50 by 6. It is inad-
visable to carry the interpolation beyond one additional digit.
Since 50 +6=8 - + ..., we have found the desired number to be
6955.8. The decimal point is placed after the fourth digit accord-
ing to the rule for the characteristic, the given characteristic
being 8. Should the logarithm be followed by — 10, the decimal
point must finally be moved ten places to the left.

.

28. Cologarithms. The logarithms of divisors have to be sub-
tracted. Subtraction, however, can be avoided and the logarith-
mic computation of a succession of multiplications and divisions
effected by a single addition process. There is no advantage in
using cologarithms when but two factors are involved. When,
however, more than two are involved, instead of dividing by the
denominator or divisor factors, we may multiply by their recipro-
cals, obviously a legitimate substitution. Now

logi = —log m =(10—logm) — 10.

This logarithm, (10 —logm) — 10, is called the cologarithm
of m, written cologm. It may be written down immediately from
the table by beginning at the left and subtracting each figure from
9, until the last figure, which must be subtracted from 10. Thus

log 28.24 = 1.45086
and colog 28.24 = 8.54914 — 10,

29. Logarithms of trigonometric functions. Logarithms of the
trigonometric functions are arranged in Table II in the same
manner as are the natural functions, or true numerical values of
the functions. Logarithmic secants and cosecants need not be
printed, since they are the cologarithms of the cosines and sines.

The sines and cosines of angles and the tangents of angles less
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than 45° are numerically less than unity. In conformity with
Art. 24, therefore, their logarithms are written in the augmented

form, log sin 65° 21’ = 9.95850 — 10.

The — 10 is not printed in the table but it is always understood.
The positive portion of the characteristic is printed in the table.
Usage differs with respect to printing the logarithmic tangents
of angles greater than 45°. Engineering and physical instruments
are usually graduated to minutes or larger divisions of the angle,
8o that it is not feasible to carry the interpolation farther than to
tenths of minutes. The tables of functions and of proportional
parts printed in connection with this book are arranged with this
in view.

Astronomic observations justify carrying the interpolation to
seconds, and astronomers use for this purpose tables computed to
seven or more decimal places.

For example,

log sin 29° 87' = 9.69890 — 10,
log sin 29° 38' = 9.69412 — 10.

The difference is .00022, and in the P.P. column is a table headed
22. Suppose now that log sin 29° 87.4' is required. Opposite 4
under 22 is found 8.8; hence 9 is to be added in the fifth decimal
place, giving

log sin 39° 87.4' = 9.69399 — 10.

EXERCISE X

1. Find from the table the logarithms of 72484, 619.25, 695 x 107,
00064375, 3 x 1027,

2. Find from the table the logarithms of 901386, 14.205, 321 x 109,
000078541, 2 x 10%4,

3. Find the numbers whose logarithms are 3.71295, 12.61242, 8.21312 — 10.

4. Find the numbers whose logarithms are 4.21382, 11.75153, 6.18579 — 10.

5. Find Young’s modulus of elasticity from the formula ¥ = —-’l—, if
m = 4932.5, g = 980, [ = 110.5, = = 8.1416, r = .25, s = .3.

6. Find the radius of the sun if its mass is 2.03 x 10%® grams, and its
average density is 1.41, knowing that mass = volume x density.
7. The radius r of each of two equal, tangent, iron spheres which attract
each other with a force of 1 gram’s weight, is given by the formula
Qrort)t_ M
48 ~ RY
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in which the density of iron p = 7.5, the mass of the earth M = 6.14 x 10
grams, and the radius of the earth R = 6.37 x 10® cm., while = = 3.1416. Solve
for r and compute by logarithms.

8. Solve example 7 for spheres of lead with density p = 11.3.

9. The population of a county increases each year by 12.5 per cent of the
number at the beginning of the year. If ite population Jan. 1, 1778, was
2.5 x 10%, what will it be Deec. 81, 19267

10. If the number of births and deaths per annum are 8.5 per cent and
1.2 per cent respectively of the population at the beginning of each year, and
the population on Jan, 1, 1830, was 5 x 105, find the population Jan. 1, 1905.

11. Find from the tables log sin 25° 82.8/, log cot 71° 18.6', colog cos 16°
29.21,

12. Find from the tables log cos 19°25.7/, log tan 81°168.2/, colog sin
65°12.8'.

13. Find the angles corresponding to log cos a=9.31728, log cot 8=9.16251,
log tan y = 0.61258.

14. Find the angles corresponding to log sin & = 9.68152, log tan
B =9.71728, log cot y = 0.15882.

18. Francis deduces the following formula for the discharge over a weir,
¢ = 8.01 bH'®, in which ¢ is the discharge in cubic feet per second, b the breadth
of the crest, and H the head of water. Find by logarithms the discharge when
b=85and H=12.

16. A common formula for finding the diameter of a water pipe is
= o.479 [L18°]
d=0.479 [ : ]

in which £ is a friction factor, I the length of the pipe, ¢ the discharge, and &
the head. Find d when f=0.02, ! = 500, ¢ =5, & = 10.

17. The discharge from a triangular weir is given 8s ¢ =c 4V2g¢ HY, in
which ¢ is a constant, g the acceleration of gravity, and H the head. Find ¢
when ¢ =822, H=1.2, ¢ = 0.592.

18. The formula for velocity head is A = 0.01555 V2. Find A when ¥V =5.-

19. Theelevation of the outer rail on what is known as a one-degree railway
curve to resist centrifugal force is sometimes given by the formula ¢=0.00086 V',
e being in inches and ¥V the speed of the train in miles per hour. When ¥ =45,
compute e.

20. Another expression for the relation of the preceding problem is

= _!_82‘2"}2' Here ¢ is in feet, g is the gaunge of the track, V is the speed in feet
per second, and R is the radius of the curve. Given g =4.71, ¥V =66, R = 5780,

compute e.

[
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21. The differencé between the base and hypotenuse of a right triangle is

given by ¢ —a = p fa’ and when a and ¢ are nearly equal, approximately by

C—aG=_—.

2¢
Find the per cent of error introduced by the second method when the angle
between @ and ¢ is 15°

22, If a = length of a short circular arc and ¢ = its chord, then approxi-

mately a —c = 2:—;2’. Given a = 22’:3 and R =100, compute the value of this
difference. .

23. The relation between the pressure and volume of air expanding under
certain conditionsis p,», 14! = pv!4!, where p, and v, are initial values. If p, =40,
v, = 5.5, find v when p =24 also when p = 16.

24. The relation between the initial and final temperatures and pressures
is given by the equation

& v “ t + 460 _ ( }L)—"l
= 1.41 .
4, +460 \p,

With ¢, = 60 and the other data as in Ex. 28, find the final temperatures
for p =24 and p = 186, respectively.

30. The slide rule. The principles of logarithmic computation
are conveniently illustrated by means of the slide rule, now widely
used in performing mechanically such operations as admit of the
use of logarithms. A brief description of this instrument will be
found profitable at this stage, and its use by the student as a
ready check upon the numerical solution of problems is strongly
recommended. As will be seen by an inspection of the simplified
diagram of Fig. 19, the rule is essentially a device for adding and
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subtracting logarithms, thereby giving a wide range of computa-
tions. In the figure the point a on the “slide” is set opposite
the point B on the “rule.” If both scales, which are alike, are,
so divided that AB is equal, or proportional, to log 2 and ad to
log 8, then C on the rule opposite 4 on the slide gives the distance
AC equal, or proportional, to log 6. That is, log 2 4 log 8 = log
(2 x 8) =log 6.
Similarly by subtraction, AC —ab = AB;

that is log 6 — log 8 =log 2.
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The point a of the slide is called the index, hence we have the
following rules for simple operations.

1. To multiply two numbers, set the index opposite one num-
ber on the rule and opposite the other number on the slide read
the product on the rule.

2. To divide one number by another, set the divisor on the
slide opposite the dividend on the rule and read the quotient on
the rule opposite the index.

In the instrument as actually constructed, ® Fig. 20, there are four scales
denoted respectlvely by A, B, C, and D, of which scales B and C are on the

Fia. 20.

slide. For convenience in compound operations the rule is provided with a
runner r by means of which a setting of the slide may be preserved while the
slide is moved to a new position. The following example will illustrate the
manipulation of slide and runner.

63 x 115 x 27
Find <340

Set 14.6 on C scale opposite 63 on D scale; move runner to 115 on C scale;
move 342 on C scale to runner, and opposite 27 on C scale read result on D scale.

In this, as in all slide-rule computations, the decimal point inust be
located by inspection.

On the lower side of the slide are three scales, the outer of which are marked
S and T respectively. The following examples illustrate the use of these scalea.

ExamprLE 2. Find 36 sin 22°.

Set 22 on the § scale opposite the mark on the slot in the right-end of the
rule; then opposite the end of the A scale can be read on the B scale the natu-
ral sine of 22°. Now opposite 36 on the A scale read the result on the B scale.

ExampLE 3. Find 26.5 tan 13° 15'.

Reverse the slide and set 13° 15 on the T scale opposite the mark on the
slot; then opposite the end of the B scale can be read on the D scale the natu-
ral tangent of 13° 15’. Set the runner at this point and replace the slide with
the index at the runner. Opposite 26.5 on the C scale read the required prod-
uct on the D scale.

ExampLE 4. Find 5619,

Set the index of C scale opposite 56 on D scale and opposite the mark on
the under side of the right-hand end of the rule read 748 on the middle scale
# A more detailed description of the slide rule is not within the scope of this

book. A manual describing fully the use of the instrument can be had of any firm
selling alide rules.

Examerz 1.
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of the lower side of the slide. This reading is the mantissa of the logarithm
of 56. The characteristic 1 must be supplied as usual. Now in the usual way
find 1.8 x 1.748; that is, put index to 1.748 on D scale and opposite 1.3 on C
scale read the product 2.272. This is the logarithm of 561-2. Set the mantissa
272 on the logarithm scale opposite the mark on the rule and read 118.7 on the
D scale opposite the index.

EXERCISE XI|
. 64 x 87 193 0.05 x 137 x 62

1. Find _— ; .
ind (@) a3 ® grxo1r’ © Tixosx6s

2. Find (a) 127 sin 24°, (b) 0.32 sin 72°, (c) 16.5 cos 85°
3. Find (a) 37 tan 8° 2%, (b) 1.85 tan 40° 10/,

. 17 cot 32° sin 32°
4. Find ——_ =, () 355 —/——.
ind (a) 6+ ®) sin 47°

5. Find (a) 28}, (b) V3.65, (c) 7.3117.

31. Right triangles solved by logarithms. — It is now possible,
with the aid of the logarithmic tables, to solve right triangles the
numerical values of whose parts contain more digits than those

given in Chapter III, without entailing laborious multiplications
and divisions.

ExampLE 1. Given a=51.72, 8="T73° 46'.
Solving the proper formulas for the unknown parts, we have
a=90°— 8,

_a
cos 8’

b=atan g8,
A =}a%tanp,

b = e cos «, check.

c

Sum of angles =90° 00’
B="T8 46
a=16°14".

log a=1.71366
log cos 8 = 9.44646 — 10
log ¢ = 2.26720
. ¢=185.01
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log a=1.71866
log tan 8= 0.58587
log b = 2.24953
. b=177.64
2log a= 8.42782
log tan 8= 0.58687
colog 2= 9.69897 — 10
log A =13.66216 — 10
.. A =4598.67

Check
loge= 2.26720
log cosa= 9.98283 — 10
log 8 =12.24953 — 10
< b=177.64

" ' Note that log a®*=21log a. In solving, first write all the forms
needed for the complete solution ; secondly, look up and write in
all the needed logarithms of the data from the tables; thirdly, per-
form the additions and subtractions ; lastly, from the logarithmic
results find the numbers. Then log cos 8, log tan 8, and log
cos a(=logsinB) can all be found from once turning to the
angle 78° 46'.

A form of computation sometimes used is given below. It has
the advantage of being more compact than the usual form, and
furthermore the logarithms of the data stand close to the data,
thus permitting easy verification of results or correction of

mistakes. Check
a=51.72 log 1.71366 log 1.71366
B ="T8°46'log cos 9.44646 —10 log tan 0.53587
¢=185.01  log 2.26720 log 2.26720
b=177.64
a=16° 14’ log 2.24958 log cos 9.98283—10
b=177.64 log 2.24958

al log 3.42782

B log tan 0.53587

2 colog 0.69897 — 10

A=4598.T7 log 8.66216
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ExaMmprLE 2. Given b=T124.5, ¢=9365.4.

b
We have, cos = -,
[

B=90°—a
a=c8ina, ’

A =1}bcsin o,

a = b tan «, check.

log b = 8.85275
log ¢=3.97153
log cos &« = 9.88122 — 10
o= 40° 28.4'
B=49°31.¢
loge= 3.97153
log sine= 9.81231 —-10
log a = 13.78384 — 10
a=6079.2
Check
log b= 3.85275
log tane= 9.93109-10
log a =138.78384 — 10

a=6079.2
The following is the compact arrangement of the computation :
" Check
b="T1245 log 8.85275 log 3.85275

¢ = 93654 log 8.97153 log 3.97153

a=40°284" logcos 9.88122—10 log sin 9.81231— 10 log tan 9.93109— 10
B = 49°31.6

a = 6079.2 log 8.78384

a = 6079.2 log 3.78384

It appears that the Pythagorean proposition, a?+ 82=¢3, is
not used because it is not adapted to the use of logarithms. It
might be used in this case, however, in the form

a=V(e+b)(e-b).
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EXERCISE Xl

Find the missing parts of the following triangles, using loga-

rithms. (The work may be checked with a slide rule.)
a 8 e [ ] A
1. 63° 2584
2. 7531 8642
3. 75°15.2 965.24
4. 47.193 8972.6
5, 7.3208 6.1082
6. 18°25.5' 82.96
7. 182.97 985.27
8. 53.215 13.712
9. 65983 72916
10. 29° 50.2 10.207
11. 25° 17.4' 382.97
12. .00020 7
13. 63°12.7 7.1436
14. 07151 09127
15. 35°16.4/ .62001
16. 35°16.8' 41658
17. 00615 00415
18. 80°12.5' 5.2108
19. 00729 01625
20. 25°18.2 1729.3

The examples 1-20 of Exercise VIII may also be solved by
logarithms and the results compared with those there obtained.

21. Find the radius of the circle inscribed in a regular pentagon whose
side is 12 feet.

22. Find the side of a regular pentagon inscribed in a circle whose radius
is 15 feet 7 inches.

23. Find the area of a regular octagon whose circumscribed circle has a
diameter of 10 feet.

24. A tower 120 feet high throws a shadow 69.2 feet long upon the plane

of its base.

What is the angle of inclination of the sun?

25. The top of a certain lighthouse is known to be 73 feet above the
From a boat the angle between the top and its reflection is measured

water.

as 6°45'.

How far is the boat from the light?

26. Two trains leave a station at the same time, one going north at the
rate of 80 miles per hour, and the other east at the rate of 40 miles per hour.
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How far apart will they be in 20 minutes, and what is the direction of the line
joining them ?
27. Show that if a is the side of a regular polygon of n sides, the area of
1 180°

the polygon is given by 4 = ;a’n cot —-
n

28. Show that if r is the radius of a circle, then the area of a regular cir-

cumscribed polygon of n sides is A = r?n tan 180°,
n

29, Find a value for the area of an inscribed polygon corresponding to
that given above.

30. Taking the moon's diameter as 31’ 20" and its distance from the earth
a8 239,000 miles, what is its diameter in miles ?

31. At what distance may a mountain 4 miles high be seen across a plain,
the earth being taken as a sphere of 4000 miles radius?

32. If the sun’s diameter is taken at 866,000 miles and its distance from
the earth as 93,000,000 miles, what angle should it subtend at the center of the
earth.

33. An approximate formula for an ordinate at the center of a chord to a
circle is m =%'5_}‘(‘)0 % in which  is the length of the
chord in feet and a the deflection or circumferential
angle subtended by a base or chord of 100 feet. Find
m for 1 =30, a = 2°

34, If I is the angle of intersection between two
tangents to a circle of radius R, the distance T from
a point of tangency to the point of intersection is given

by T= R tan é Find T for R = 3000 feet, and I =22° 52",

Fia. 21.

85. The length of a chord is given by 2 R sin } I, in which 7 is the central
angle. Find the chord length for R = 2000, I = 12° 13'.

86. A river which obstructs chaining on a survey is passed by tri-
angulation. The line 4B, Fig. 22, is measured 200
feet perpendicular to AC, and the angle A BC found
to be 85° 27". What is the distance AC?

e el 37. With an instru-
i ment at A, Fig. 23, a

€

level line of sight passes

6 ft. above the top of a wall as measured

on a rod. The angles of depression® to

the top and bottom of the vertical face

Fio. 20, Bre respectively, 2° 31’ and 42° 16/

What is the height of the wall?

# The angles of elevation and depression of an object measure respectively its
angular distance above or below the horizon of the observer.
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38. In order to obtain both the horizontal
and vertical distances to an inaccessible point,
the solution of two triangles may be necessary.
Fig. 24 represents two views of the problem.
Wishing the distances AD and BD, first lay out
the base line AC of any convenient length per-
pendicular to AB. Measure the angle ACD and
compute 4 D.

Next from AD and the angle DAB, the
Fia. 24 angles of elevation, compute DB.

© Having AC =300 ft., ACB=61° 34/, and
DAB =14° 41, find AD and DB.




CHAPTER V
THE OBTUSE ANGLE

82. Definitions of the trigonometric functions of obtuse angles.
If an obtuse angle (i.e. an angle greater than 90° and less than
180°) is placed on the axes of codrdinates in the same manner as
was the acute angle in Art. 6, the terminal line will extend
into the second quadrant. The trigonometric functions of such
angles are defined exactly as in Art. 6. Thus in Fig. 25,

8in @ =

eIy Q¢

CO8B &= —,

tan ¢ = ‘;, ete.

33. Signs and limitations in value. The abscissas of all points
in 04 (Fig. 25) are negative, while their ordinates and radii
vectores are positive. It is evident, therefore, that some of the
defining ratios are negative. In AY
accordance with the law of signs
in algebraic division, we find
that the sines and cosecants of all
obtuse angles are positive, while P
their cosines, secants, tangents,
and cotangents are negative. v

The student should verify a
each of these statements in de- \ X
tail and become unhesitatingly ¥ = 0
familiar with these fundamental
facts. Fia. 25.

Furthermore, the sine and cosine cannot be numerically greater
than unity and the secant and cosecant cannot be numerically
less than unity.

47
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Quenry. What are the limitations in value of the tangent and co-
tangent ?

34. Fundamental relations. If the effects of the law of signs
are traced, it will be seen that all the relations of Art. 9 hold also
for functions of an obtuse angle without any modifications.

35. Variation. As the angle @ varies from 90° to 180°, while
v remains constant, z is always negative and varies from 0 to — v,
and y is positive and varies from v to 0. Consequently, as 6
increases from 90° to 180°, sin 8 decreases from 1 to 0, cos  decreases
(algebraically) from 0 to — 1, tan € increases from — o to 0, cot 8
decreases from 0 to — oo, sec # increases from — o to —1, csc 8
increases from 1 to oo.

The terms positive infinity and negative infinity require careful
consid¥ration. If @ varies continuously from 89° to 90°, tan 8
varies in such a way as to exceed in magnitude any previously
assigned definite value, however large. As it is positive for all
values of @ in the first quadrant, it is consequently said to become
positively infinite (+ ). If @ varies continuously from 91° to
90°, tan 6 varies so as to exceed numerically any previously
assigned definite value. As it is, however, always negative for
values of @ in the second quadrant, it is said to become negatively
infinite (— ). The plus or minus sign written before the symbol
oo merely indicates whether the trigonometric function increases
numerically without limit through a positive or a negative set of
values.

36. Functions of 180°. As € approaches 180° v remaining
constant, z approaches —v and y approaches 0. We have,

Y then,
sin 180° = 0,
cos 180° = —1,
A
P, tan 180° =0,
v N
N E 5 * cot 180° = oo,
sec 180°=—1,
Fic. %. csc 180° = oo,

87. Functions of supplementary angles. Two angles are called
supplementary if their sum is 180°. Thus, in Fig. 27, « and 8 are
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supplementary, and 8= 180 — «, a being acute. The triangles
OMP and ONQ are similar, but ON is negative. The pairs of
corresponding sides are vand v/, zand 2/, y and y'. Hence we have

sin (180°—a)—smﬂ=y—_‘1—/—sma,

cos(180°—a)_cosﬁ_—_—s=—cosa,
4
tan (180° — @) =tan;8=‘Z—_,=—%=—tana.-
Similarly : AY
cot (180° — &) = — cot «,
sec (180° — &) = — sec a,
P
cse (180° — &) = csc «. Q
(180° - a) Lo 1o 2T
As a consequence of the = a ~ X
relation sin (180° — &) =sin«, N M
two values exist for arcsin m,
the one acute, the other obtuse,
and supplemental to each other. Fia. 27.
Y In case m=1, the two values are
identical.
Query. Is this also true of arccos m,
Q arctanm, etc.?
SN v £ 38. Functions of (90°+a). In
VI N8 v Fig. 28, 8=90°+«, « being acute.

Nzjo = u X The triangles OMP and ONQ are
similar, but the pairs of homologous
sides are v and v/, z and g, y and 2/,
Fia. 28. while 2’ is negative. We thus obtain

sin (90°+«) msin 8= =Z = cos a,
vV v
!
cos (90°+a)=cosﬂ=%=—-%=—sina,

tan(90°+¢)=tanﬂ=3L:=—§=—cota.
z
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In like manner,

cot (90° + a) = — tan «,
sec(90° + ¢)= —csc o,
csc (90° + &) = sec a.

EXERCISE Xill

1. Find the values of the functions of 185°. (See Art. 11.)
2. Find the values of the functions of 150°. (See Art. 11.)

Find the value of sin [cos~!(~ §§)], tan (csc-14}), cos [arctau (— #)],

the angles being of the second quadrant.

4. Find the value of cos (arccos — &), sin [tan-1(— A4%)], cot (arcain §§),
the angles being of the second quadrant.

8. Express in terms of an angle less than 45°, cos 160°, tan 130°, sec 150°.
6. Express in terms of an angle less than 45°, sin 170°, csc 95°, cot 140°.
9. Verify for @ = 60°, the equations

12.

8in2a =2sinacosa, cos2 & = 2cost ¢ — 1.
Verify for & = 45° the equations
gin3 ¢ = 8sina — 4ein’«,
co83 x = 4cos®a — 8oos .

Verify for & = 120°, the equations

) ,1+cosa
008-2-12— T,

tap 1 = 4/l —cose _1 —cose,
2 1+cosex 8in &

. Verify for @ = 120°, the equations

.1 ’l—cusu
mn§a= ——2—,
1 1+cosa_ 14 cosa
t - o = = .
ootz &=y

1-cosa sine

Verify for a = 120°, 8 = 80°, the equations
sin (a + B) = 8in @ cos B + cos & sin B,
‘co8 (& — f3) = cos @ cos B + sin a sin 8.

Verify for a = 120°, 8 = 60°, the equations
sin (& — B) = sin a cos 8 — cos & gin B,
cos (& + f8) = cos & cos B — sin « sin S.
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13. Fill in the proper values in the following table for handy reference:
- sin e cos e tan & cota seca e a
{1 0
30° 3
45° §v2
. 80° }v3
90° 1
120° V3
185 | 3v8
150° >3
180° 0




CHAPTER VI
OBLIQUE TRIANGLES

39. Formulas for solution. In the oblique triangle ABC,
Fig. 29, let the angles be denoted by a, 8, v, and the lengths of
the opposite sides by a, b, ¢, as in the figure.

The relation a + B + y=180° al-
ways exists, and consequently when
two of the angles are known, the
third is determined. Five of the six
parts of the triangle still remain to
be found; namely, the three sides
and two angles. It has been shown
in elementary geometry that if any
three independent parts are given, the triangle is determined and
the remaining parts can be found. Then two formulas, in addi-
tion to the one just stated, are sufficient for the complete solution.

It is, nevertheless, convenient to express the relations between
the sides and angles in a variety of forms. Those given in the
following pages are selected on the score of utility. They fall
into sets of three each. From any one of each set the other two
may be written by cyclic advance of the letters involved ; Z.e. by
changing a into &, b into ¢, ¢ into a, and at the same time a« into
B, B into v, & into @. The legitimacy of this process and the
truth of the resulting formulas appear from the consideration that
no distinction is made as to any one side or any one angle. Any
side and its opposite angle can be exchanged for any other pair.
The cyclic advance affords a convenient systematic method of
writing all possible forms.

From any one of these sets, as for instance that of Art. 40,
or that of Art. 42, all the other sets may be derived by purely
analytical processes. An independent geometric proof is given of
each, however. The derivation by the analytic method suggested
will afford a valuable review exercise after Chapter VIII has been
studied.

Fia. 29,
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40. Law of projections. If, in C
Fig. 80, the perpendicular CD is -
drawn from C to AB, the portions
AD and DB are respectively the
projections on the side AB of the

other two sides AC and CB. Con- 4 5 - B
sequently, by Art. 15, we have Fia. 0.

AB= ACcos a + CB cos 8,
or c=bcosa+ acosf.

By drawing the perpendicular from 4 and B in turn, we get
a=cocosB+beosy,
b=acosy+ccosa.

By cyclic advance of the letters the first formula is transformed
into the second, the second into the third, and the third into
the first.

41. Law of sines. Connect the circumcenter K in Fig. 381
with the vertices, A, B, C, and the midpoints, L, M, N, of the sides.
Then is L BKC=2a, £ CKA=2 B,

y LAKB=2q4. (Why?) In the
right triangle KLC, L LKC =,
and LC=}a. Denoting the cir-
cumradius by R, Art. 16 gives

i }a=Rsine.
‘ B The other right triangles give
A likewise
4 b = Rsin B,
Fia. 31. 4 c=Rsiny.

Equating the values of 2 R, we obtain the law of sines; namely,

a b c

sina sinf siny

The cyclic symmetry is apparent.

42. Lawof cosines. In Fig. 32 the perpendicular p drawn from
C divides the opposite side ¢ into two portions m and =, and the
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whole triangle into two right triangles ADC and BDC. In

c the latter triangles, we have, by
Art. 16,
b a a?=n? 4 p?
i = (o= m) +p?
A ™ <~ D n B = (¢—bcosa)?+ bsinta;
Fia. 32. or a’=03+c*—-2bceosa.

Proper changes in the figure yield
b*=c*+a*— 2accos B,
F=a*+ b -2aboosy.
These again may be written by cyclic advance of the letters.
Useful forms for writing these laws are:

— a3
cosa:%,
S+ ad— B

2L 022
COS7=a——;Iab ‘.

43. Law of tangents. In Fig. 33 draw A the bisector of the
angle at A, and BF and CD perpendicular to it from the other
vertices.

Then
LBAF=/ZDAC=}a,
while
£LDCE=Z EBF=90°—/ZBEF
=90°— (L ABE +4£ BAE) Fia. 33.
=$(+B8+M—(B+ia)
=3 (r-A8).
Again,

DF=EF+ DE=AF— AD.
From the right triangles in the figure we get

tan } (=B =55n="7p=

or tan }(y—B)="7

:mt%a.
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The forms m}(G—Y)=:;Z°"‘§‘Fv

tan} (B ) = ;=5 oo}y,

may be obtained from suitably altered figures or by cyclic advance.

If 3> e, the first formula will stand
N

c

t
cco }a

Similar changes may occur in the other two.

44. Angles in terms of the sides. Construct the inscribed
circle, Fig. 84, and denote its c
radius by r. Denoting the perim-
eter a4+ b+ ¢ by 28, we have E D

AE=AF =8 —a,
BD=BF=38-b,

CD=CE=s—c. 4 ¥ B
Consequently, by Art. 16, Fro. .
t‘mia=a:a’
m%p-—_a:b’
tani-y=a:o.

The value of r in terms of the three sides is derived in the
corollary of Art. 45, thus completing this theorem.

45. Area of oblique triangles.

C (1) By elementary geometry, we
have (see Fig. 85)
b b \e A =1} pe.

Introducing the value of p found by
Art. 16, we get the formula

Fig. 35, Ad=1}bosina,
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with the cognate forms
A=}O¢llllp, A= g-abslny.

(2) Squaring both members of the formula just derived, we
obtain, with the aid of readily justifiable transformations and sub-
stitutions,

A=} Bsintq
=} 821 - cos? )

=b—2c(1+cosu) . %c(l—cosa)

=b_c(1+bﬂ’) : ’2’(1_1”_'*"‘2;“’)

2 2 be 2 2 be
_2bce+?+2—a? 2bc—82— 2+ al
4 4
=b+c+a_b+c—-a . a—b+e¢ a+b-e
2 2 2 2

=8(s—a)(e—b)(s—o).
Whence we have the desired formula
A=Vs(8—a)(s—-b)(s—o)
(8) If r is the radius of the inscribed circle, we have, by
elementary geometry,

A =rs
CoroLLARY. Equating the values of A found in (2) and (3),
and solving for r, we get
= \/(S;G)&b)(a -0
s

the result needed to complete the theorem of Art. 44.

46. Kumerical solution. The formulas of Arts. 40 and 42 are
not adapted to the employment of logarithms. They are useful,
however, in case the numerical values of the sides contain few
digits.

The solution of oblique triangles falls into four well-defined
cases, according as the three given parts consist of

I. Two angles and one side.
II. Two sides and an angle opposite one of them.
ITI. Two sides and the included angle.
IV. Three sides.
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Each of these three cases with a model solution is discussed in
detail in the following articles.

47. CasE 1. Given two angles and one side. Let the given
parts be a, 8, a.

The solution is effected by means of the formulas of Arts. 39
and 41. Solving for the unknown parts, we have

o=180°— (= + B),

_asinfB
~ gina’
e @80T
sin &
with the check formula e= b stn 7.
sin 8
ExaMPLE. Given a=47°18.2'
B=65°24.5

sum of angles = 180°
a4 8=112°37.7
soy= 67°22.8
loga= 1.635624
log sin 8= 9.95871 —10
colog sin « = 0.13433
log b =11.72828 — 10
<. 5=1538.491

loga= 1.68524
log siny= 9.96522 — 10
colog sin a = (0.18433
log ¢=11.73479 — 10
*. ¢=54.299
Check
log b= 1.72828
log siny= 9.96522 — 10
colog sin 8= 0.04129
log ¢ =11.78479 — 10
. ¢=54.299
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The compact form of computation is as follows:

a = 48.176 log 1.68524 log 1.88524 Check
‘B=65°245'| logesin 9.95871 — 10 colog sin 0.04129

« = 47°13.2' |colog sin 0.13433 |colog sin 0.18438

b=158.401 log b 1.72828 log 1.72828

y=67°22.8 log sin 9.96522 — 10! log sin 9.96522 — 10

¢ = 54.209 log ¢ 1.78479 log ¢ 1.73479

¢ = 54.209

ExAMPLES

Find the remaining three parts, given

1 B=65°155, y=81°246,  b=7T24.82.
2. B=88°37.4, y=T5°328, c=120.68.
3. =48°202, y=115°33.8, a=14.829.
4 @=68°415, y=110°165, c=9.4326.

48. CasE II. Given two sides and an angle opposite one.
Let the given parts be a, b, «.
The solution is effected by the formulas of Arts. 89 and 41.
Solving, we have
bsina

a b}

v =180° - (« + B),
_asiny

~ sine

sinB=

_bsingy
“ snB

with the check formula

An ambiguity arises in this case, however, since to any value
of the sine correspond two supplementary angles, one acute, the
other obtuse. Thus we also have

B’ =180°— 8,
v =180°— (e + A",
) asing
sin «

c,_bsinvy’
~ sin B

9
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The nature of this ambiguity will appear from the construction
of the triangles with the given parts. If the given angle « is -
acute, there will be no solution, one solution, or two sollitions,
according as the free end of a (see Fig. 86), swinging about

C, meets the line AL in no points, one point, or two points;
i.e. a8 a is shorter than C'D, the perpendicular from ¢ upon AL,
longer than AC, or intermediate between CD and AC. For
a = CD there is a single right triangle; and for a = AC, a single
isosceles triangle.

When « is right or obtuse, there is no solution or one solution,
according as a is shorter or longer than AC.

These results may be tabulated for reference.

a<bsin g, no solution,
&< 90° bsinae<a<b, two solutions,
a=b, .
=, } one solution.
a=>bsin a,

- =5, no solution
S0 {22y o0y
“> a>"b, one solution.

If we proceed with the numerical work, without previously
testing the number of solutions possible, the case of a single
solution will appear from the fact that « + 8’ >180°. (Whence
a4 (180°—-8) >180°% or e — 8> 0, or 8<a.) When there is no
solution, we shall get log sin 8> 0; i.e. its augmented character-
istic will be 10 or greater. A preliminary free-hand sketch will
ordinarily serve to determine the number of possible solutions.

ExAMpPLE 1. Given
a = 8541,
b = 4017,
« = 61° 27'.
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By careful arrangement of the work, we can determine the
number of solutions by inspection.

Check
b=4017 log  3.60390 log  3.60390
«=61°27" log 8in 9.94369 —10 [colog sin 0.05631

bgin @ log  38.54759
a=3541 log  8.54013 log 8.54918
B=_85°11' log sin 9.99846 colog 8in 0.00154
a4 B=146° 38
y=38° 22 log sin 9.74086 —10| log sin 9.74036—10
¢=2217.16 log  8.34580
¢=2217.16 log  8.34580

From the logarithms of b, a, and & gin « it is seen that b sin &
< a < b, whence there are two solutions. For the second solution
we have :

Check
a= 61°27 colog sin 0.05631
B= 844y colog sin 0.00154
a+f'=156° 16’
y'=28° 44/ log sin 9.60474 — 10 log sin  9.60474 —10
a=8541 log  3.54913
b=4017 log 3.60390
¢'=1622.52 log 3.21018
o =1622.52 log 321018

ExaMPLE 2. How many triangles are determined by the
given parts a = 30°, b = 24, a=10, 12, 20, 24, 80?

Here bsin a =24 x } =12. Accordingly, we have, for a =10,
no triangle ; for a = 12, one right triangle ; for ¢ = 20, two triangles;
for a = 24, one isosceles triangle; and for a = 30, one triangle.

EXAMPLES

1. How many triangles are determined by the given parts 8 = 43°, ¢ = 120,
and b = 63, 81.884, 95, 120, 150?

2. How many triangles are determined by the given parts y = 54°, a =75,
and ¢ =51, 60, 67.5, 70, 75, 1002

Find the remaining parts of all possible triangles, given

3. a= 062518, b= 172.932, B= 98°23.5.

4. a= 429.15, c= 828.12, a=130° 83.7".

5. b=238912.7, ¢ = 3528.5, y= 85°25.8".

6. b=129680, ¢ = 152060, B = 38°28.9.
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49, CasE III. Given two sides and the included angle. Let
the given parts be a4, b, v, with 2> 5. The solution is effected by
the formulas of Arts. 43, 89, and 41. Solving, we have

—b
tan § (e — B) =2 cot
2 ( B ) a+ b % Ys
F(atB)=90°—}
c= 28Ny,
sin &
with the check formula e= é_'sm_fy_
sin 8
ExAMPLE. Given
a=.745,
=.231,
b="18 15"
y="78°1¥ . Jog sin 9.99080—10 | log sin  9.99080—10
a=.745 log  9.87216--10
b=.231 log 9.86361 - 10
a—b=.514 log 9.71096 —10
a+b=.976 colog 0.01055
Y_39°7.5 log cot 0.08966
? .
“; =82°55.3' log tan 9.81120—10
%ﬁ_’ =50° 52.5/
«=83° 47.8/ colog sin 0.00255
B=17°57.2 colog sin 0.51109
c=.73368 log 19.86551 - 20
¢=.78367 19.86550—20
ExaAMPLES

"Find the unknown parts, given
1 5=284.12, ¢ = 361.286, a=125° 32,
2. ¢=1895.71, a = 482.33, p=137°21".
3. a =.06351, ¢ =.10329, B =283°29.4".
4. ¢=.00397, b=.00513, « = 08° 21.8'.

50. Case IV. Given the three sides. The given parts are
a, b, e
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The solution is effected by the formulas of Art. 44, with the

formula for » from Art. 45. We have at once

8=} (a+b+0),

—4/ = (a=b)(s—©)
r=y : :
1 r
tan 5 = i ete.
a+ B + ¢ = 180° serves as a check formula.

ExAMPLE 1. Given

a=.05841,
b=.06217,
¢ =.08482.
Then 28 =.15040
8=.07520 colog 1.12378
s —a=.02179 log 8.83826 — 10
s—b=.01308 log 8.11494—10
8— c=.04088 log 8.60617 —10
3 log 16.18315 — 10
r log 8.09157 — 10
§= 29° 32.8' log tan 9.75331 — 10
'§= 43°27.6' log tan 9.97663 — 10
%= 17°0.1' log tan 9.48540 — 10
a= 59° 4.6'
B= 86°55.2'
y= 34 0.2

sum of angles =180° ¢’

When the three sides are given and only one angle is required,
say 8, the two appropriate formulas may be combined into one, as

1, _JJGE=a)s—c)
t’"‘zﬁ‘\/ s(s—10)
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ExAMPLE 2. Given

a= 35,

b= 64,

e= T8.

Then 28=172

8= 86 colog 8.06550 — 10
8—a= 51 log 1.70757
s—b= 22 colog 8.65768 — 10
8—c= 13 log 1.11894

2)19.564459 — 20
B8=230°37.4" log tan 9.77230—10
g

B=061°14.8

ExampLEs
Find the angles of the following triangles:

1. a=6128, b=7T148, ¢=6815.
2. a=12,545, 5=28612, ¢=10,353.

3. a=.05431, 5=.03714, c=.06513.

4. a=.006152, b =.008174, ¢ = .007534.

5. a=172,584, b=125217, ¢= 86,925.

6. a=18,679, 5=235,791, ¢=24,680; find B.
7. a=80,812, 5=37,194, ¢=43,618.

8. a=36,925, b=25814, ¢=14,703; find y.

Find the areas in examples 1 and 2.

51. Composition and resolution of forces. Equilibrium. In
mechanics the solution of oblique triangles is frequently required
in problems relating to the composition and resolution of forces,
velocities, and other directed quantities.

In this article will be stated, without proof, some of the laws
governing the combination of such quantities, showing the appli-
cation of trigonometry to certain of the problems involved.

Suppose the line segments AB and AC, Fig. 87, to represent
in magnitude and direction two forces acting at a point 4, and in-
cluding between their lines of action the angle ¢.
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Complete the parallelogram ABDC. The diagonal AD, drawn
from the point A, is the line segment representing the resultant
c of the two given forces, ¢.e. the sin-
gle force that will produce the same
effect as the two given forces. The

D process of finding the resultant of
two or more given forces is called

b the composition of forces.
A Conversely, the two line segments
AB and AC may be taken as the

components of AD. Thus the two
forces AB and AC, acting together
at A, produce the same effect as the single force AD. The pro-
cess of finding two or more forces equivalent to a given force is
called the resolution of the force into its components.

Since the segment BD is equal and parallel to AC, it follows
that the resultant and the two components form a closed triangle
ABD, and the relation between the forces may be obtained by
solving this triangle. Note that the angle ABD is the supple-
ment of the angle ¢, so that by Art 87,

co8 ABD = - cos ¢.

ExAMPLE 1. Find the resultant of two forces of 320 dynes
and 400 dynes, respectively, acting on a common point, at an angle
of 54° 28/,

In the triangle ABD, Fig. 87, we have given two sides and
the included angle. If only the magnitude of the resultant is
desired, it may be obtained by the law of cosines, Art. 42. Thus

we obtain S g
AD=/{AB*+ AC +2AB - AC - cos ¢}.

If the angle formed by the resultant with its components is also
required, the logarithmic computation may be effected as in Case
I1I, Art. 49.
ExAMPLE 2. Resolve a force of 40 pounds into components
making angles of 82° and 74° 20 with its line of action.
Referring to Fig. 37, we have
AD=40,£LBAD =382, and L DAC=ZLADB="T4"20.
Denoting the sides opposite the angles 4, B, D, respectively, by
a, b, d, we have from the law of sines,
a=bSiLA. d=bSinD‘
sin sin B

Fia. 37.
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Hence the components may be computed.

Three forces are in equilibrium when the resultant of any two
forces is equal and opposite to the third. Thus in Fig. 37, if
the direction of the force AD is reversed, it and the forces AB
and AC will be in equilibrium. The necessary conditions that
three forces shall be in equilibrium are :

1. Their lines of action shall lie in the same plane.

2. Their lines of action shall meet in a point.

8. The line segments representing the three forces when laid
off in order shall form a triangle.

In Fig. 38 the forces a, b, and ¢ applied at a common point are
in equilibrium. The angles between the lines of action are de-
noted by A, B, C, as indicated. When the forces are laid off to

Fia. 38.

form the triangle, the angles of the triangle are seen to be the
supplements of the corresponding angles 4, B, C.

That is,
«=180°— A, whence sin ¢ = sin 4,
B =180° — B, whence sin 8 =sin B.
ete. . eté.

From the law of sines,

a b _ e
sinea sinB singy

Therefore, a_ _ b —_c .
sind sinB sin C
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EXERCISE XIV
Find the unknown parts of the following triangles:

- B y a d ]
1. 62° 85/ 82016 50278
2, 75290 92841 69289
3. 25° 86.2' | 68° 13.5/ 8.9168
4, 55° 55.4/ 25817 36201
5. 69° 17.5/ 829.12 689.12
6. 100° 10’ 62198 29322
7. 0000713 { .0000987 | .0001256
8. 61°15.2/ | 49°16.3/ 58.201
9, 120° 50.2' | 2.8815 4.1217
10. 88° 17.2/ 21.992 60.715
11, | 150° 24.2/ 038251 047819
12. 58° 06.5' 57.15 67.31
13. 75°19.8' | 70°20.2 658.42
14, 100.05 | 200.07 150.08
15, 126° 26.4/ 0021868 0032292
16. 10° 82.8/ 25.317 37.298
17. 50010 70020 90080
18. 48° 25.8/ | 56° 84.5' 7219.2
19, 120° 15’ 62158 75202
20. 90° 00’ 725.63 617.25

Solve the following triangles, given
21. a = 2500, ¢ =2125, A = 208,600.
22, 5 =108.5, ¢ =90, A = 4586.7.
23. «=78°10, b =758, A =T74,808.
24. B=57°25, c¢=>57.65 A4 =38055T7.
25. Find the areas in examples 1, 9, 17.
26. Find the areas in examples 2, 4, 14.

27. Determine the magnitude and direction of the resultant of two forces
of magnitudes a and b, if their lines of action include an angle ¢.

28. Carry out the computation of example 27 in the following cases:
a=20,5=386, ¢ = 45°; a=2300, b = 540, ¢ = 64°;
a="75 b=200, ¢ =145°; a =250, b = 320, ¢ = 120°.

29. Find the directions of three forces in equilibrium if a=7,4 =10,
¢ =15; also if a = 24, b =36, c = 42.
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30. Referring to Figure 38 solve completely and interpret physically when
a =695, b =483, C = 155°; a =720, b = 840, B = 100°.

31. Solve and interpret when a =1200, B =135° C=150°; a =135,
b= 142, ¢ =95.

32. Resolve a force of magnitude 84 into two equal components making an
angle of 60° with each other.

33. Resolve a force of magnitude 240 inté two components of 120 and 180
each and find the directions of the components. .

34. Determine the formula for one side of a quadrilateral in terms of the
other three sides and their included angles. Compute fora = 10,0 =12, ¢ = 15,
ab =135°, bc = 60°.

Query. How many given parts serve to determine the remaining parts
of a quadrilateral ?

35. Given the four sides and one angle of a quadrilateral, determine the
other angles and the diagonals. Compute for a = 80, b = 72, ¢ = 80, d = 100,
ab = 120°.

36. Given three angles and two sides of a uwdnlateral determine the
remaining sides. Compute for a = 830, b = 500, ab = 100°, e = 80°, éd = 60°.

37. Find the angles and the lengths of the sides of a regular pentagram,
or five-pointed star, inscribed in a circle of radius 8.

38. Compute the volume for each foot in depth of &
horizontal cylindrical tank of length 30 feet and radius
6 feet.

39. Having measured the
following data, A = 80°380/,
B=172° 15, and ¢=232.6
feet, compute the inaccessi-
ble distance b (Fig. 39).

40. Compute the dis- nC;‘
tance a across a lake, Fig. “[!
40, having measured A, *b)’

B, and ¢, which are respectively 51° 20/, 72° 40’ and
3420.5 feet.

41. A Dbeing invisible
from C, find the distance b
through a forest, having
measured a = 1037 feet, ¢ = 1208 feet, B=69° 25'.

42. In Fig. 42, BC, the distance of the foot of
a wall below the instrument is 12.3 feet, 6 and «,
the angles of elevation and depression, are 15° 20
and 21° 15, respectively. Find the height of the wall and its distance
from the instrument.

S

Fia. 41.

Fia. 42.



68 OBLIQUE TRIANGLES

43. A pole BC, Fig. 43, is 12 feet long and leans two feet from a vertical
toward the instrument at A. 1f the angles of elevation of the top and bottom
are respectively 37° 15 and 11° 50/, what are the horizontal and c
vertical distances from the instrument to the foot of the pole?

B 44. It is desired to find the

7" horizontal distance and eleva-
Ui27  tion of the inaccessible
A / i point B, Fig. 44,
4200 ooy with' reference to A
A H an instrument at 7o
A. Having laid "7 2

out a base line
AC, 250 feet long, .

Fia. 4. the angles at 4 and C are found to be 87° 1¢
and 73°51', respectively, and from A the angular elevation of B is 11°32'.

«C 45, Given B =110° 05, AE = AD = 200 feet,
/. DE = 125 feet, and AB = 632 feet; find the distance
AC to be laid off, and the
inaccessible distance BC

|

(Fig. 45).
4 E 46. From measure-

Fia. 45. ments we have (Fig. 46)
AB =600 feet, BAC =70° 40/, BAD =92° 30/,

ABD = 65° 82, ABC = 89°25. Find the inacces-
D sible distances AD Fia. 46.
and DC, and the angle between DC and AB.

47. From the instrument at A (Fig. 47)
the angles of elevation to the top and base of
the vertical wall are 15° 12’ and 1° 28/, respec-
tively. A base line AB is measured 75 feet
toward the wall down a plane inclined 8> 16/,
and from B the angle of elevation to the top
of the wall is 37° 46’. Compute the height of
the wall and its horizontal distance from 4.

48. 1t is required to prolong the line AB (Fig. 48) beyond an obstacle.
At B is made an angle 52° 20’ to the right
and at C an angle of 110° 00’ to the left, BC 4 B <
being 210 feet. Compute the proper distance D E
CD and angle to the right at D, also the
inaccessible distance BD. Note that by mak-
ing B = D = 60° and C = 120°, then BC = CD
= BD and all computations are avoided.

49. Having but one point C' (Fig. 49) from which both inaccessible points
A and B are visible, we are required to find the inaccessible distances AC

C'\
Fia, 48,
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and AD and the angle between AB and DC.
ADC = 87° 42, DCA = 60° 82', DCE = 170° 0%,
BCE =41° 20/, CEB = 111° 85', DC = 3865.2 feet,
CE = 410.7 feet.

50. It is required to ascertain the length and
position of an in-
A4 B accessible line AB
(Fig. 50), its ex- .
tremities not being visible from a common
point beyond the obstacles. By chaining
we have CD = 210.7 feet, DE = 390.4 feet,
EF =173.5 feet.
Then the follow-
ing angles are measured: ACD = 83°41’, CDE =
19° 12 left (180°-19°12'), CDA =79°49', FEB =
33° 20, DEF = 42° 03 left, EFB = 115° 27",
In order to locate points suitably upon a map,
find lengths 4B, AD, aud BE.

Fi1a. 50.

51. A tower 115 feet high casts a shadow 157
feet long upon a walk which slopes downward Fia. 51.
from its base at the rate of 1 in 10. What is the elevation of the sun above
the horizon?



CHAPTER VII

THE GENERAL ANGLE

Only those parts of trigonometry that are necessary for the solution of triangles
have been developed thus far. In this and the following chapters are considered
some of the more important topics of another phase of trigonometry that is no less
essential for the further study of pure and applied mathematics.

53. General definition of an angle. If a straight line rotates
about one of its points, remaining always in the same plane, it
generates an angle. The angle is measured by the amount of ro-
tation by which the line is brought from its original position into
its terminal position. For the'small rotation leading to acute and
obtuse angles this definition agrees with the customary elementary
definition, the knowledge of which has been presupposed in the
foregoing chapters.

As in Art. 8, counterclockwise rotation generates positive
angles; clockwise rotation, negative.

In the sexagesimal system of angle measurement the standard
unit is the angle produced by one complete rotation of the
generating line. This angle is divided into 860 equal parts
called degrees, the degree into 60 minutes, and the minute into
60 seconds.

In the circular system the standard unit is the radian, the
angle produced by such a rotation that each point in the generat-
ing line describes’an arc equal in length to its radius. Angu-
lar magnitudes are stated in radians and decimal fractions
thereof.

Instruments are graduated and tables printed in accordance
with the sexagesimal system, which is used in practical numerical
calculations. Astronomers, however, employ decimal fractions of
seconds, while engineers make use of tenths of minutes and deci-
mal divisions of degrees. In theoretical discussions the radian
system is commonly employed. Hereafter, in this book, the two
systems will be used interchangeably.

70
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Since the circumference of a circle is equal to 27 times its
radius, where 7 = 8.14159..., we may write the following relations
between the two systems :

2 1 radians = 360°
1 radian = 57.29578°...
=57° 17" 44.8''

and, in general, the number of degrees in any angle is equal to

the number of radians multiplied by -1-8—0, while the number of
. T

radians is equal to the number of degrees multiplied by -1%6
Thus the straight angle is 7 radians; the right angle, g radians.

If the radius of the circle is represented by r, the arc by a,
and the angle, in radians, by «, we have the important relation

a=7raqa.

53. Axes, quadrants, etc. Let the two axes of codrdinates be
assumed as in Art. 4; and, as in Art. 6, let the angle be placed
upon the axis, its vertex at the origin, and its initial line
extending along the X-axis toward the right. The sign and
magnitude of the angle will determine the position of the terminal
line, causing it to coincide with one of the axes or to fall in one
of the quadrants. An angle is said to be of the first, second,
third, or fourth- quadrant according as its terminal line falls in
that quadrant.

While the acute angle is of the first quadrant, the converse

is by no means necessarily true. The ter-
minal line of every angle, however large,
must coincide with the terminal line of
some positive angle less than 360° (see Fig.
62). For the purpose of trigonometry as H
developed in the present chapter, for every
angle, positive or negative, and of any mag-
nitude, may be substituted a positive angle
less than 860°.

Y

-

A
Fia. 52.

54. Definitions of the trigonometric functions. The trigono-
metric functions of angles of any size are defined identically as in
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Art. 6. Thus for all positions of the terminal line, Fig. 53,

Y_si z_
v_sxna, . cos a,
y_ =
z—tana, p cot a,
2—sec Y= c
= o, y—cs a.
YP Y Y Y
v,
Y Y Max M
O|"MX MT|0 X 3]0 X b X
P v
4 P
(a) ) ) (d)
Fia. 53.

55. Signs and limitations in value. The abscissas are positive
for all points in the first and fourth quadrants, negative for those
in the second and third. Ordinates are positive for all points in
the first and second quadrants, negative for those in the third and
fourth. The radius vector is, by agreement, considered positive
for all points.

In conformity with the sign law of algebra, the functions of
angles of the different quadrants will have signs as displayed in
the following table: '

Quap. SINE CosINg TANGENT COTANGENT SECANT CoBECANT
I + + + + + +
1) S - - - - +
m - - + + - -
v - + - - + -

It will be noticed that for angles of the first quadrant all six
functions are positive. In each of the other quadrants one pair of
mutually reciprocal functions are positive, the other two pairs are
negative. These positive pairs run as follows: second quadrant,
sine and cosecant: third quadrant, tangent and cotangent: fourth
quadrant, cosine and secant.
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The student should establish these statements regarding the
signs of the functions and memorize them.

Since the lengths of the abscissa and ordinate can never exceed
that of the radius vector, it follows that the sine and cosine can
never be numerically greater than unity, and the secant and
cosecant can never be numerically less than unity. The tangent
and cotangent can have numerical values either greater or less
than unity.

EXERCISE XV

1. Express in degrees, minutes, and seconds the angles ’%, "{;—R, -5%{2
H .

88, 8%,
4

2. Express in radians the angles 30°, 15°, 45°, 120°, 240°, 300°, 450°.
3. In a circle of radius 60 cm., what is the length of the arc which sub-

tends at the center the angle 80°, 60°, 5—‘)31, i ?

4. In a circle of radius 10 inches, what is the circular measure of the angle
subtended by an arc whose length is 10, 5, 20, 5 r inches?

1
5B
8

5. A friction gear consists of two tangent wheels, whose radii are 8 and
12 inches, respectively. The smaller wheel makes 4 revolutions per second. Find
the number of revolutions per second made by the larger, the angular velocity
of each, and the linear velocity of a point on the circumference of each. If
the larger wheel is attached to the rear axle of an automobile whose rear wheel
has a diameter of 80 inches, find the speed of progress of the machine.

6. The diameters of the front and rear sprocket wheels of a bicycle are
10 inches and 4 inches, respectively, and the diameter of the rear wheel is 28
inches. Find the rate of pedaling when the bicycle is traveling 12 miles per
hour, the corresponding angular velocities of the two sprocket wheels, and the
linear velocity of the chain.

7. Determine the quadrant to which each of the following angles belongs:

5 745 5 8
210°, 465°, 745°, — 830°, %’I, 1_*;1', -2

8. Determine the signs of the functions of the following angles: 240°,

330°, 400°, 5—3’! -141', 6®.

9. Show that the quadraut to which an angle belongs is determined if the
signs of any two non-reciprocal functions are given.

10. To what quadrant does an angle belong if its sine and tangent are
negative; its secant and cotangent positive; sine and secant negative; tangent
and cosine positive ?
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11. Determine the quadrants of the following angles:
' sin-1§; arccos — f; arctan}; cot-! — ;.
12, Determine the quadrants of the following angles:
sin-13} =cot-! — §; arccos — 4 =arcesc H{.
13. For what values of « is sin & — cos a positive ?
14. For what values 9f a is tan @ — cot @ negative?

15-20. Find the missing values in the following table:

sin cos tan cot sec (373 Quap.

i I

— 33 II1
— & I11
e IV
3 IV
-3 IIT

#mc»-<‘a:alr\

56. Variation of the trigonometric functions. A change in
the angle will produce a corresponding change in the values of the
coordinates and in their ratios. If, for convenience, the chosen
point in the terminal line of the angle is maintained at a constant
distance from the vertex, the radius vector will retain the constant
value +v.

As the angle @ increases continuously from 0° to 860° the
abscissa and ordinate vary continuously between the limits — v
and +v. As @ increases from 0° to 90°, z is positive and decreases
from v to 0; as @ increases from 90° to 180° z is negative and
decreases (algebraically) from 0 to — v; as 6 increases from 180°
to 270° z is negative and increases from —v to 0; and as 8
increases from 270° to 860°, z is positive and increases from 0 to ».
As 6 increases from 0° to 90°, y is positive and increases from 0 to
v; as @ increases from 90° to 180°, y is positive and decreases from
vto 0; as @ increases from 180° to 270°, y is negative and decreases
from 0 to — v; as @ increases from 270° to 360°, y is negative and
increases from — v to 0. Upon introducing these varying values
into the ratio definitions, we are enabled to trace the variation of
the trigonometric functions.

We see, for example, that as @ increases from 0° to 360°,
tan @ continually increases algebraically, changing sign from
negative to positive through the value 0 as @ passes through 0°,
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180°, and 860°, and from positive to negative by becoming infinite
as @ passes through 90° and 270°. There is an infinite discon-
tinuity in tan 6, for @ = 90° and 0 = 270°.

QuerY. Which of the t;rigonometric functions other than the tangent
become infinite and therefore discontinuous ?

The student should trace the variation of each function in detail, stating
the narrative verbally.

57. Graphs of the trigonometric functions. The whole behavior
of each function can be conveniently represented by means of the
graphical method already introduced in Art. 4. Assume a pair

AY

’

Fia. 54.

of axes of coordinates, as in Art. 4, and along the X-axis to the
right lay off equal spaces corresponding to the number of degrees
in the angle §. At each point in the X-axis erect a perpendicular
whose length is proportional to the value of the sine of that angle.
Each point thus determined has the property that its abscissa
represents the angle 6 and its ordinate the corresponding value
of sin . Now having located a sufficient number of points, draw
through them a smooth curve. It will be seen that the value,
sign, and variation of the sign at each instant is fully exhibited
by the ordinate, position, and inclination of the curve or graph.
The same may be done for each of the functions.

The graphs of the different functions are here presented.
The student should trace carefully the intimate and exact cor-
respondence of the graphical and the verbal narratives.
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Fia. 59.

58. Functions of 270° anq 360°. By the method of limits em-
ployed in Art. 12, we get the following sets of values:

sin 270°= — 1, cos 270° =0,
tan 270° = oo, cot 270° =0,
sec 270° = oo. ese 270° = — 1,
sin 360° =0, cos 360° =1,
tan 360° = 0, cot 360° = oo,
sec 360° =1, e8¢ 360° = oo,

Here oo is used as before to denote the value of a fraction whose
numerator remains finite while its denominator approaches zero.
The sign + or — is prefixed to the symbol o according as the
variable becomes o through a positive or a negative sequence of
values. In the light of this discussion the values of the functions

of &k x "—;(/c any integer) may be tabulated, the upper of the pair

of double signs arising when the angle approaches the critical
value from below.

[] sln @ con @ tan 6 cot 0 rec @ csc
0 F0 +1 F0 F o +1 Foo
| 4 +1 40 1+ w® +0 + @ +1
T +0 -1 FO F o -1 4+ o
i -1 FO0 4 @ 4+ 0 F o -1
2 +0 +1 FO F o +1 F o
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EXERCISE XVi
0

1. Trace the variation, as @ varies, (a) of sin20; (3) of cot 3

2. Trace the variation, as @ varies, (a) of tan 20; (b) of cos g
3. Draw the graph of cos 2 6.
4. Draw the graph of sin 3 4.

[+

. In what points will a horizontal line § unit above the X-axis intersect
the graph of sin #? Explain the significance of the result.

6. In what points will a horizontal line 1 unit above the X-axis intersect
the graph of tan §? Explain.

7. If the graphs of tan 6 and cot @ are drawn on the same axes to the same
scale, where will they intersect? What is the significance?

8. If the graphs of sin § and cos @ are drawn on the same axes to the same
scale, where will they intersect? What is the significance ?

9. Construct the graph of log,, z, taking values of the number z a3 abscis-
sas and the corresponding logarithms as ordinates.

59. Fundamental relations. Just as in Art. 9 we find, by in-
spection, :

1
=, 1
e a sina M
seca=—1, @
‘ co8a
1
ta=——; 3
oot @ = . 3
by division, tana =129, ©))
cosa
cos a -
ta=——; o
e sina ®
by virtue of the Pythagorean proposition,
sinfa + cos?a =1, (6)
tan?a + 1 =sec’ a, )
cot’a +1=cs?a. ®

The student should prove that all these formulas conform, for
angles in all quadrants, to the algebraic law of signs.
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60. Line representations of the trigonometric functions. As the
names tangent and secant indicate, the trigonometric functions
were originally defined as certain lines measured in terms of a
standard unit line. The adoption of the abstract ratios, as in
this book, is of comparatively recent date. It is both interesting
and advantageous to know the line representations and show that
they lead to the same science of trigonometry as do the ratio defi-
nitions.

The line representations most frequently used involve the use
of a unit circle, i.e. a circle of radius unity. It is evident that
we may replace each of the defining ratios of Art. 54 by an equal
ratio so chosen that its denominator is positive unity. The value
of the ratio will be equal to that of the numerator. In other
words, if a positive unit radius is taken as the denominator, the
length and sign of the numerator will represent the function in
magnitude and sign. We have, then, simply to select six lines
whose ratios to the radius agree with the definitions of Art. 54.
The ratio of the subtended arc to the radius is, by Art. 52, the
circular measure of the angle.

Suppose, then, a circle of unit radius drawn with its center at
the origin of codrdinates.

The angle is placed upon the axes just as in Art. 6, and from
the point P of intersection of the terminal line with the circle,
perpendiculars MP and NP are drawn to the two axes. From
the two points A and B where the positive axes cut the circle,
tangents AT and BS are drawn meeting the terminal line (pro-
duced if necessary) in the points 7' and §.

Since P, T, 8, Figs. 60-63, lie in the terminal line, we have, at
once, in accordance with Art. 54 (or Art. 6):

sin e = P, cosa=—"—
or oP’

tana=A—T, cota=BS
0A OB’

sec ¢ = QZ, csca=~0§.
oA OB

But by construction, '
OP=0A=0B=1.
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These denominators may then be suppressed and the functions
represented graphically as indicated below :

S TB
IS N
. S
N Er
M
a P
o MlA™
Fia. 60, Fia. 61,

B

Y

P,
Fia. 62. / Fia. 63.
sina= MP, cosa=NP,
tanae= AT, cot a = BS,
seca= 0T, esca= OS.

Moreover, the angle, in radians, is represented as follows:
arc AP
« = —=arc AP.

)

According to the modern view, the line is not the funetion, but
by its length and direction represents the function in magnitude
and sign.

Note that the line representing the tangent is always drawn
from the point A and that representing the cotangent from B.
All the lines are read from the axes fo the terminal line. Hori-
zontal lines are positive toward the right, negative toward the left.
Vertical lines are positive upward, negative downward.
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By means of the Pythagorean proposition, and the theorems
concerning similar triangles, the fundamental relations given in
the preceding article, as also the limitations of value stated in Art.
55, are readily established. So, also, the subsequent theorems of
trigonometry may be interpreted by means of the line represen-
tation of the trigonometric functions. This graphic interpretation
frequently presents special advantages. This is the case, for ex-
ample, in the investigation of the variation of the functions con-
sidered in Art. 56. So, too, the construction of the graphs of the
functions as treated in Art. 57 is facilitated, since the lengths of
the defining lines may be transferred by the use of dividers.

EXERCISE XVii
Find the values of the following expressions:
1. cos'a — sin*a, when & = arctan (—{), in the 2d quadrant.

_cosa sin o

. — —~1f 3
" 1 tana l_cota,whena_sec (- 3), in the 8d quadrant.

3 tana + seca — 1
tana —seca + 1

1 1

, when a = arcsin (— }}), in the 4th quadrant.

oo —cova T ewu + oota’ when & = cos—133, in the 4th quadrant.

Solve the following equations, finding all the angles less than
2 7 that satisfy each equation :

5. cos B8 =}.

6. tanf8 =— V3.

7. sin2a = — }V3.

8 cot3a=1.

9, 4sinfae—4cosa—1=0.

10. 3tan?8—1=0.

11. 2sinBcos B — sin B =0.

12, 2gine + V3tana =0.

In exercises 13-24, verify the given identities by transforming
the first member into the second.

13. (sin & + cos a)(cot @ + tan &) = sec & + csc a.

14. (sec @ — cos a)(csc @ — sin &) = sin @cos .

15, fanatcotf tan a cot 8.
cot « 4 tan 8
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16. (rcos )% + (rsin §cos )3 + (7sin 0 sin p)2=1r4,
17. tan ¢ — tan 8 .cotacotB+l_1

l+tanatan 8 cot B —cota

18. csc o (sec @ — 1) — cob & (1 — cos &) = tan « — sin a.
19. (sina cos 8 — cosasin 8)3+ (cos @cos B + sin « sin 8)2=1.
20. sec @ csc @ (1 — 2 cos? ) + cot ¢ = tan .
21. (sin @ cos 8 + cos a sin 8)? 4 (cos & cos 8 — sin & sin 8)2=1.
22 sectqcscta— (10NIOT_ 4
tan?
23. (cosa+ V—1sina)(cos g~ V— lsina) = 1.
24. (cose+ V—1sina)? + (cosx — V_ 1 sin @)% = 4cos? et — 2.

25. By means of Fig. 60 show that, when 6 is acute and measured in
radians, sec § > tan § > @ > sin 6.

26. By means of Fig. 60 show that, when @ is acute and measured in

radians, csc @ > cot 0> (’; - 0)> cos 0.

61. Periodicity of the trigonometric functions. It was pointed
out, in Art. 23, that if two angles differing by an integral multiple
of 360° are placed on the axes, their terminal lines coincide. As
an immediate consequence, it follows that corresponding functions
of the two angles are identical. Thus we may write

sin (2 k7 + ) =sin q,
and, in general,
FQ@Fkw + a)=F(a),

where F denotes the same function in both members of the equa-
tion, and k is an integer. ' :

62. Functions of l:k 1—; + a.]. Precisely as in Art. 10, 37, and

38, we may express the functions of the angles +«, 90° +a,
180° + a, 270° + «, 360° & &, and other similarly compounded angles
in terms of the functions of «, no matter what the quadrant of the
angle . Because of the periodicity brought out in the preced-
ing article, it is8 not necessary to carry the investigation beyond
the five multiples of the right angle mentioned ; indeed, the fifth
reduces to the first. On account of the double signs and the pos-
sibility of « belonging to any one of the four quadrants, there
exist thirty-two distinct cases. The demonstration is the same
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for all cases, involving the same proportionality of sides of similar
triangles and the same question of agreement or opposition of signs.
The working out of the proof in three characteristic instances
should be sufficient to enable the student to do the same for any
and all cases. The theorem is, however, somewhat elusive, and
the student can completely master it and render it an infallible
instrument only by actual careful construction and proof of most
of the cases. Upon first study it may be well to limit considera-
tion to the cuses in which « is of the first quadrant.
Let it be required first to express the functions of (180° + «)
in terms of functions of «, when « is an angle of the first quad-
rant. If, in Fig. 64, L X0A = o,

$Y then £ XOB=B=180°+a. The
p_—"A two triangles OMP and ONQ are
g v similar, the pairs of correspond-

N z,f % y ing sides being v and ', zand 2/,
p 0 =« M X and yand y. Notice also that

y 3 v’ z' and y' are negative, all the
B other sides being positive. Giv-
ing due attention to signs, we
Fia 64. may write:
!
sin (180° + a) =sin B=%= —%:—sin’a,

cos(180°+a)EcosB=s’7=—f=—cos«,

-

tan (180°4 a)_tan,8=3—/x—,=—= tan e,
cot (180°+ a)Ecotﬂ_gl=2=cota,
¥y ¥
sec (180° +a)—-sec,3=v—'=—~=—seca.
z

csc(180° + «) =cse 8= v_i =—Y=—csca.
¥ Y
Again, let it be required to express the functions of (270°—a)
in terms of functions of «, when « is of the first quadrant. In
Fig. 65,4 X0A = a, £ XOB=8=270°—a. The two triangles
OMP and ONQ are similar, the pairs of corresponding sides now
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being v and ¢/, z and g/, and y and 2/. The sides 2’ and g’ are

negative, all the others positive. We may then write:

!

gin (270°—a)EsinB=%=—§=—cosa.
o ay= Z__y .

cos (270 —¢)=cosB=—7=—;=—sma.

tan(270° — «) =tan g=% _§= cot &

cot (270° — a)= cotB._—_"£=tana.

8ec(270° — a)= secB=—=—§=—csc¢.

esc(270° — @)= cscﬂ_—_—gg—seca.‘

y z

As a third and especially important

instance, let us find the functions of — 1Y
when « is of the second quadrant. In o
Fig. 66, XOA=a, XOB=8= —a.

The two triangles OMP and ONQ

are similar, the pairs of correspond- N & (]

ing sides being v and ¢/, z and 2/, v 5
y and g, while z, 2/, and gy’ are B Q
negative.

We then have, as before:

siu(—a)EsinB=§=-—-g= —8in &,

tan(—a)atanﬁ=y—,=£=—tana.

cot(— a)._cotB._————=-coba,

sec(— ¢)=secﬁ—;=£=seca,

v v
csc(—a)EcscB=.;/—,=—;=—csc¢-
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¥

It will be noticed that whenever the number of right angles
involved is even the pairs of corresponding sides are » and v/, z and
2, y and y' ; while whenever the number of right angles is odd
the pairs of corresponding sides are v and ¢/, zand y', y and 2'.
Thus we have the theorem : Any function of an even number of
right angles plus or minus « 1s
numerically equal to the same func-
A tion of a; any function of an odd
number of right angles plus or minus

ALY

v

Is

P
NII

M

Yy
B~

8

~

)

Ay
°

Fia. 66.

~X

a i8 numerically equal to the cor-
responding co-function of a; the
agreement or opposition of signs is
to be determined from the quadrants
of a and of the compound angle. It
may easily be verified that in all

cases this agreement or opposition
of signs is the same as when « is of first quadrant.

The general theorem may also be stated as follows : If the sum
or difference of two angles is an even number of right angles, the
Junctions of the one are numerically equal to the same functions of
the other. If the sum or difference of two angles is an odd number
of right angles, the functions of the one are numerically equal to the
corresponding co-functions of the other. The agreement or opposition
of signs te to be determined from the quadrants of the two angles.

The significance of the theorem is made clear by application
to an example: Required to find the value of cos (810°+ «).
Here 810° =9 x 90° an odd number of right angles. When « is
considered as of the first quadrant (and its functions consequently
positive), the compound angle (810° + «) is of the second quadrant
and hence its cosine is negative. The required relation. is, there-
fore,
cos (810° + &) = —sina,

which holds for all values of «.

Again, to find the value of tan1230°. We have
1230° = 14 x 90° — 30°, and is of second quadrant.
Then tan 1230° = — tan 80° = —-L_.
V3
The student may, if he prefers, construct the figure and proceed
as in the demonstration just given.
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As a cbnsequenoe of these relations, it follows that to every
inverse function correspond two angles, lying between 0 and 2 .

Thus arcsina=« and 7 —a,

arccosd=a and 27 —a,

arctanc=a and w4+«

arccotd=« and T+ a

arcsece =a and 27 —

arcescf=a and =7 —e.

These statements should be verified by the student.

EXERCISE XViil
Express in terms of a positive angle less than 45°:
1. gin 700°. 4. cot — 86°.
2. cos 260° 8. csc 980°.
3. tan 436", 6. sec 1400°.

Find the value of cos @ +sin « and of tan « — cot @ when « has
the value

» T»
7- 6‘ . 10- '6_ -
2% ) 11
8. ——E-. 11. =
19w O
9, <5 12. - T
Find all the values between 0° and 860° of
13. arctan V3. 16. arcsec 2.
14. cec-i(— V). 17. arccot (~ 1).
18. arccos (— .5). 18. sin-!(—§ V3).

Find the value of
19. sin 480°sin 680° + cos (— 420°) cos 600°.
20. tan 840° cot 420° + tan (— 300°) cot (— 120°).

175 o 147 _11_1r) (_4_1')
21.tan6tan3+eot( 3 cot 3 )

. 19 ( 11 1r) . Tx ( 4 'u')
2 1o MY einlT _im
2. sin 6 CcO8 8 an 3 cos 3



88

g Ry

THE GENERAL ANGLE

If sin 200° 80’ = .35, find cos 830° 30'.

. If tan 558° 26’ = {, find cot 468° 26'.
. If cot 520° = — a, find sin 160°.
. If cos 590° = — m, find tan 850°.

Express cos («¢ — 90°) as a function of a.

Express sin (¢ — 180°) as a function of a.

. Express tan (¢ — 360°) as a function of «.
. Express cot (@ — 270)° as a function of «.



CHAPTER VIII
FUNCTIONS OF TWO ANGLES

63. Formulas for sin (a + ) and cos (a + B). Suppose « and
B to be acute angles. In Fig. 67 (a+ 8) is acute; in Fig. 68
(e + B) is obtuse. The following demonstration applies to both
figures. .

Let £ XOA=a, £AOB=8; then £ XOB=«+ 8. From
P, a point in OB, draw PM perpendicular to OX, P@Q perpendic-

B 4Y 4

o7 5 A
P N

4 R

ik
RS 4

f?ﬁ\ >X
a X M ON -
(2] MN "
Fia. 67. Fie. 68.

ular to 0A, and from Q draw QN perpendicular to OX, and QR
perpendicular to MP. The angle RPQ =a and RP= QP cos ,
RQ = QP sin a, by Art. 16. By the same article,

MP = OP sin (a+ B).
Also MP=MR+ RP=NQ+ RP
=0Q sina+ QP cos e
= OP sin a cos 8+ OP cos a sin B.

Equating the two values of MP and dividing through by the
common factor OP, we have the theorem

sin (a + B) =sina cos B+ cos a sin B. @)
80
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In like manner
OM = OP cos (a +8),
and also OM=ON-MN=0N-RQ
=0Q cosa— OP sina
=O0P cos « cos 8 — OP sin « sin 8.

Hence the companion theorem
oos (a +P) =cos a ces B —sin a sin B. (&)

These are called the addition formulas and are fundamental
in trigonometry.

64. Extension of addition formulas. The two formulas of the
Iast article were proved only for angles both of the first quadrant.
It remains to be shown that they hold when « and 8 denote any
angles,

gFirst, let « be an angle of the second quadrant. Then
¢ (= a — 90°) is an angle of the first quadrant. Now «=90°+¢,
8o that, by Art. 88,
' 8in @ = cos ¢, cos & = — sin ¢.
Since ¢ is of the first quadrant, the formulas of Art. 63 apply
and we have
sin («+8) = sin (90° +-¢ + B3)
= cos ($+8)
=cos ¢ cos 8 —sin ¢ sin B,
=8in a cos 8+ cos @ sin 8.
Likewise
cos (a4 B) =cos (90°+ ¢ + 3)
=—sin (¢ +A8)
= —sin ¢ cos 8 — cos ¢ sin B,
=cos « cos 8 — sin « sin 8.

The formulas are therefore true when one angle is of the first
and the other of the second quadrant. By adding 90° succes-
sively to each of the angles, the formulas are established for two
positive angles of all quadrants. If one of the angles is negative,
it can be augmented by such an integral multiple of 860° as to
produce a positive angle possessing the same functions.

The addition formulas are, therefore, true for angles of any
size.
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EXERCISE XIX
Evaluate the addition formulas for
1. a=60° B =30 3. a=240°, 8 = 150°.
2. a=45°, B=90° 4. o = 800° 8 = 150°.

8. a = arctan}, 8 = arccos (— ), « first quadrant, 8 second.
6. a = gin-1(— ), B = cot~! 4%, a fourth quadrant, 8 third.

Find the value of

o (G4 on (1 5) - 5] (45
8. sin (§+a) cos (’é+ B) + cos (’§+ a)sin (’('-;4- p).

9. gin (1 + n) @acos (1 —n) @+ cos (1 + n) @sin (1 — n) «.
10. cos (1 +n)acos(l — n) & —sin (1 + n) a@sin (1 —n) &
11. sin (0 + &) cos (0 — ¢) + cos (0 + ¢) sin (0 — ¢).

12. cos (6 —¢) cos p — sin (0 — ¢)sin ¢.

13. Evaluate the addition formulas for & = 60° 8 = 45° and thus find
sin 1059, cos 105°, gin 15° cos 15°

14. Evaluate the addition formulas for « = 45°, 8 = 80° and thus find
8in 75°, cos 75°, sin 15° cos 15°

65. Subtraction formulas. In the addition formulas replace 8
by — 8. We have

sin (e — B) = sin a cos (— B) + cos a sin (— 8).
But by Art. 62,
8in (— B8) = —sin 8, cos (— B) = cos 8.
Making this substitution, we have
sin (a — B) =sin a cos B — ces a sin B. (¢))
In like manner
cos (¢ — B) = cos e cos (— B) — sin a sin (— B),
or, by the same substitution,
oos (a — B) = cos a cos B + sin a sin . )
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66. Formulas for tan (a + B), cot (a + ). From Arts. 59 and

63 we have ) 8
tan - sin (&« +
e+ By =20Lat 5D g
=_sinacos,8+cosasinB
cos & cos B —8in @ sin 8
sinaecos 8 , cosasin B
_ o8 «cos B cosacosB
= Cosa cos B _sinasin B
cosecos 8 cosacosf
or, finally,

m(¢+p)=_“ME_. D

l—tanatanfp
In like manner we may derive

tan
m(“_P)_ﬁmaump @
Apai
g, _cos(a+ )
cot(a-l-,B)—si—n—(m-)-s
cosacos,B—smasmB
smacosB+oosasmB

€O8 « Cco8 /3 sin ¢ 8in B
sm asin B " sinasin B
= sin « cos B, cosasin B’
sinagin 8  sinasin 8

oot B+ eota
Likewise

eot(a—p)=°°t“°°tﬂ+l- @

oot B — cota

or

EXERGCISE XX

1. Demonstrate geometrically the formula for sin («— g8), when « > B
both acute.

A

2. Demonstrate geometrically the formula for cos (« — ), when & > B,
both acute.
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Evaluate the formulas of Art. 65 for
3. «=060° 8=120° 8. a=arcsin #, 8 = arctan - {§.
4. a=240°, 8 =150° 6. a=cot-!§}, 8 =cos! §§.

Evaluate the formulas of Art. 66 for
7. «=3830, B=150° 8. a=210° 8 = 800°.
9. a=cos™ f, B=1tan"! (- }).
10. « = arccot §§, 8 =arctan ¢§.
11. Find the functions of 15° by putting & = 45° 8 =80°.
12. Find the functions of 15° by putting « = 60°, 8 = 45°.

Show that
13. gin (¢ + B) sin (@ — B) =sin?a — sin? 8 = cos? 8 — cos? .

14. cos (@ + 3) cos (& — B) = cos? @ — sin? B =cos? 8 —sint

Expand by successive applications of the formulas :

13. cos (& + B +v)- 17. tan (e + B8 +7v).
16. sin (¢ + B8+ 7). 18. cot (@ + B+ ).
Show that

19. ain(:—;+ a) — sin (g—a)= sin e.
20. cos(%+u)+cos(%—a)=cosu.

87. Functions of twice an angle. In the addition formulas of
Arts. 63 and 66, place 8=«. We then obtain

sin2a=2slnacosa, 1
0082 a = cos’a — sin? a, [¢))
=1-—2sint e, 2a)
=2cos?a — 1. @b
__2tana P
tm2¢-———-1_t.n2a 3)
t2a —1

2a=2"2"". 4
wt<a 2o0ta S

68. Functions of half an angle. From Art. 67 we may write
co828=1—2sin% 8,
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and solving for sin 8,

sin 8= V}(1—cos 2 B).
Now placing 2 8= a, so that 8= g, we obtain

=VIA = e). ®
Similarly
cos28=2cos38—-1;
go that

cos B= %(l+cos 2 B),

" and, with the same substitution,

cosla=V1(l+ocma). ()
Dividing the first formula by the second, we get

1 l—cosa
Za=4—2¢ 3
fange \/1 + oosa ®

and inverting,

1 + cos ATC8Q 4
“t a= Q1 —oesa ®

Rationalizing the numerators of the last two formulas, we get
other useful forms,

tan Lg= L—CO8& o)
2 sina
cot 1 o= ]'_.-'-‘L“. (6)
2 sin a
EXERCISE XXI

Find the values of

1. The functions of 60° from those of 30°.
2. The functions of 120° from those of 60°.
3. The functions of 75° from those of 150°,
4. The functions of 15° from those of 30°.

Find the values of the functions of

5. 2 arctan . 8. § arctan i§

6. 2cos-1 (— ). 9. arcsin J; + 2arocot §.
7. §sin-1(— 34). 10. arctan #& — 2 arccos §.
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Transform the first member into the second :

1+sinf—cos28 _
n e Giemog —=ef

1+4+co88+cos26
sinf+sin26

13. (V1+sina+ V1 —sin )?=4sin*} a.
14. (V1 +sina— V1 —sina)?=4cos?} a.

13. = cot é.

15. tan (i+a) —tan(i—a) =2tan?2 a.
16. cot (E+a)—oot(£—a) =—2tan2a.

Find the values of « which satisfy the following equations :
17. (2+ V8)(1-sin2a&) ~2cos?2 & =0.
18. sin2a«+2cos2a=1.
19. 48eci2a+tan2a="7.
20. csc2a+cot2a=2.
Show that
21. tan-! -"'—'_-—2= corl——s——.

3 vVii—4z+13
22. arctan — 2 — arcese Z+1.

V34223 2
23. Find si (z_ - ll;e).

nd sin Z 2tan."\1+z

2¢. Find sin (sin“ m + tan-1 —-—"1""’)
m

25. Find si 1—-a)—-2 ta

. .
nd sin (arocos ( a) arctan V )

26. Find cos (arccos (1 ~2a) — 2 arcsin \/a).

69. Conversion formulas for products. Adding the two first
formulas of Arts. 63 and 65, we have

sin (e + 8) + 8in (¢ — 8) = 2sin a cos B,
or, reversing and dividing by 2,
sin @ oos B = } [sin (a + B) +sin (0 — B)]. M
If we subtract, instead of adding, we get
sin (e« + 8) —sin (a — 8) =2 cos « 8in B,

cosasinB=][sin(a+p) —sin(a—P)] @

or
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Treating the two second formulas in like manner, we obtain

o0 008 B = [008 (a + B) + 008 (a — P)], @)
sinasinB=—1[cos (a+p)—ocos(a—p)]. €))

By means of these formulas, products of sines and cosines are
expressed as sums or differences. By successive applications
higher powers and products are reducible to expressions linear
in sines and cosines. The same transformations may often be
effected by application of the formulas of Art. 87, written in the
form

and

singcos a=4}sin2a, ©))
gind ¢ = (1 — cos 2 a), ()
cos? ¢ =} (1 + cos 2 a). )
EXERCISE XXI1I
Reduce the following products to linear expressions:
1. ginbxcos8a. 6. sin a cos® a.
2. cosbasindea. 7. costa.
3. 8in7 « 8in 8 a. 8. sin‘a,
4. cos2acosda, 9. cos? « sinf @
8. sin®a cos a. 10. sin? e cos? a.
Show that

11. cos a sin (8 — y) + cos B8in(y — &)+ cos ysin(a - 8)=0.
12. sin(8 — y)sin(a — 8) + gin(y — a)sin (8 — §) + sin (@— B) sin(y—8)=0.

287 w, . 22 4
3 ir T i X0
13. sin 5 cos 5+ sin 3 cos 5

14. 2 eos%'cosi— + sin%'+ cos%': 0.

Solve for a, making use of Art. 10.

15. cos (50° + &) sin (50° — a) — cos (40° — &) sin (40° + &) = O.
16. sin (70° + @)sin (70° — &)+ sin (20° + &) sin (20° — ) = 0.
Solve for a, making use of Art. 69.

17. cosBa+ cos9a = 0.

18. sinda —8inl0 @ = 0.
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19, cos (& + @) cos(a — 0) + cos(Ba + B)cos (Ba — 8) = cos2 0.
20. sin(@ + @) cos(a —0) +sin(8x + O)cos (B & — ) =s8in24.
70. Conversion formulas for sums and differences. In the

process of deriving the formulas of the last article, before revers-
ing and dividing by 2, substitute « + 8=¢, a — 8=0, so that

¢+ o _¢-0
a 2,3 7

We then obtain the following formulas:

sing + oin® =20t Cco 80, @
sln¢—sh9=2eos§%esln§—;—°, @)
008 + 0080 =2 m*%ooosi—;—o, ®
eosq»_mo:_zm"’_;_"sm?;;-". 4)

These formulas serve to effect transformations converse to
those mentioned in Art. 69.

71. Multiple angles. In the formula for sin (e + 8) put 8=2a.
Then
8in8 ¢« =sin @cos 2a 4 cos a 8in 2 a
=sina — 2sinda + 2s8in ¢ cus?
= 3sin a — 4 sinda.
Again, cos3a=cos8xcos8 2a—sinasin2e«
=2cosbe—cose—2sindacosa
=4costa—3cos a.

In like manner the other functions of 8 « and, by repeating the
process, the functions of any integral multiple of « may be ex-
pressed in terms of functions of .

Sh that EXERCISE XXIII
ow tha
1 8inBa+s8inda

=tan5a
cos6a 4 cosda

g sda—coba_ o,

sinda+ sinda
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3. sin7Ta—ginba_ =tana
cos7a+cosba

s cosda—cos2a_ —tan8 o
sindx—sin2a

5. sma_mg_mmma_;g

sin « + gin 8

6. x:+xg——cota+ﬂwt¢2 B

". co88360+2cos50+cos76 5
8in30+2s8in560+8in78 = oot 5.

Y TNIIE T
Solve the following equations:

9. c080 + cos 58 =cos 8 0.

10. sinf +8in56 =sin3 4.

11. sin20+ 2sin4 6 +8in 66 =0.

12. cosB860+2co84 8+ 00856 =0.

Derive the formulas for:
13. cot8a. (Interms of cota.)
14. tan3a (In terms of tan a.)
18, sin4 a.
16. cosd .

Solve the equations:
17. sin8a=v2sin2a.
18. V8cos3 o +28in2a« = 0.
19. cos3 = cosacos2 .
20. sin8 ¢ =sinacos 2 a.



CHAPTER IX

ANALYTIC TRIGONOMETRY

The foregoing chapters constitute an introduction to the elementary principles
of trigonometry. The student ought now to be prepared for a more advanced
study of the theory of the trigonometric functions, which may be entitied analytic
trigonometry. It is beyond the scope of this book to consider more than a few of
the most important topics which might be discussed under this head. For a more
extended treatment the student is referred to the treatises by Henrici and Treut-
lein, Hobeon, Lock, Loney, Todhunter, and others, and, of course, to articles in
the various mathematical journals.

72. Limits of 0/sin 0 and 6/tan 0 as
0 approaches zero. Let @ be an acute
angle measured in radians. Con-
struct, as in Fig. 69, the angle é
XOP =6, repeated symmetrically
a8 X0¢Q. Draw through P the are
PAQ with center O, the chord PMQ,
and the broken or double tangent (4]
PTQ. Then Fia. 68.

4P _ 4 MP TP
orP " opr opP
By elementary geometry,
PMQ < PAQ < PTQ.

Whence, dividing by 2 and by OP,
8in @ < @ < tand. ¢}

P

R
N

= gin 6, = tan @,

Dividing equation (1) through by sin 8, wo have

1< -—‘-9—— < sec d.
sin 8 .

Now in Art. 12 it was proved that as @ approaches the limit 0,

cos O and its reciprocal sec @ approach the limit 1. Thus, the

value of 6/sin @ is always intermediate between 1 and a number

that approaches the limit 1, as @ approaches 0. The ratio 8/sin 8
99
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must, therefore, approach the limit 1 at the same time. This is
expressed symbolically by writing

1m (i) =2

Again, dividing equation (1) through by tan 8, we get

)

Now as 0 approaches 0, cos @ approaches 1, and hence, as before,
0 /tan @ approaches the limit 1 at the same time. Symbolically,

tm (arg) =

Notz. — Since sin ¢ and tan # both approach 0 along with 6, it might seem that
they therefore approach equality, and then the theorems would follow. The fallacy

of assuming that the limiting form F has the value 1 will appear on considering the

following instances. The circumference and area of a circle approach zero simul-
taneously with the radius, We have, however, the general relations

Circumference _2wr _ o, _ 6298318 ...,

Radius
Area _ »r?
== =xr=8.14160 -.. r.
Radius~ r 16 ---

Now when r approaches the limit 0, the limit of the first ratio is the constant 2 r,
and the limit of the second ratio is 0.

The limiting form g will be discussed at length in calculus. (See Townsend
and Goodenough's ¢¢ First Course in Calculus,’’ Art. 18.)

ExampLE. If @ is increased by an angle §, let it be required
to determine the limit of the ratio of the consequent increase in
sin 6 to the increment & of 8, as that increment & approaches zero.
By Art. 70, we have

2 cos (8+g) sin g
o

sin (§48) —sin 8 _
5

]

.8
=cos<0+g) ..sll;-_§.
2
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Now when & approaches 0, cos (8+%) approaches cos 6 and
)

sin -

-—gz approaches 1.

2
Hence
lim 8in (6 + &) —sin &

A 3 =cos 8.

It will be noticed that the numerator and denominator approach
0 simultaneously, but that the limit of the value of their ratio is
a number somewhere between — 1 and + 1, and depending upon
the value of 6.
EXAMPLES

In like manner find the limits as 8= 0, of

' cos (6 + 8) —cos B

8
2, tec(8+ 8)—secd g —sech (SuaaesTiON. Express in terms of cosine.)
3 esc (0 +8) —cac,

3

g tan(0+ g) —tang (S(L(:u;s;'xox. Express in terins of sine and
cosine.

5 cot (6 +8) —cot @
) ]

73. De Moivre’'s theorem. If we adopt the customary nota-
tion 1 = V — 1, so that 2= —1, we have, on performing the mul-
tiplication,

(cosa + i 8in a)(cos 8 + ¢ 8in 8) = cos e cos B — sinasin 8
+¢(sina cos 8+ cose sin B)
=cos (a + B) +¢sin (a + B), €))
a relation which holds for all values of « and 8, whether positive
or negative.
Putting 8=«, we get
(cos ¢ +t8in &)l =cos2a 4 ¢8in 2 a.
Again, putting 8= 2« in equation (1) and making use of the
relation just established, we get
(cos @ + t8in «)®= (cos a + ¢sin a)(cos 2« + ¢ 8in 2 &)
=co83a+18in3 e
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Repetition of this process proves the relation
(cos a + i8in )" = c08 na + ¢ 8in na ¢))

for all positive, integral values of n.
It is evident, upon multiplying, that

(cosa+ isin a)(cosa —isina) = 1,

whence
(cos ¢ + ¢ 8in @)1 = cos ¢ — i 8in @.

Suppose n to be a negative integer. Let n = — m, where m is
a positive integer. Now

(cos B —¢8in 8)™™ = (cos B8 + i sin B)™
= cos mB + ¢ sin mB.
Substituting m = —n and 8=— a, we get
(cos a4 t8in )" = co8 na + ¢ 8in na,

true also for negative integral values of n.
Suppose » to be a fraction, either positive or negative. Let

r .
= -, where r and s are integers. Now
8

r .1
(cos B+ ¢sin 8)*= (cos rB+ ¢ sinrB8)°.
Raising both members to the sth power,

(cos 88 + tsin 88)*=cos r8 + i sinrB.
Introducing £= n, and putting 88 = «, so that r8 = f - 8B=1na,
we get (cos a + ¥ 8in )* = ¢os n« + ¢ 8in na.

This relation, therefore, holds for all rational values of n.
By an argument involving the method of limits it can be proved
also for all irrational values of #. This is De Moivre’s theorem, an
instrument of great importance in some branches of mathematics.

ExAMPLE. An illustration of its use is afforded by applying
it to the derivation of the formulas for the sines and cosines of
multiple angles. Thus

co8 3a + ¢8in 8 a= (cos @ + i 8in )?

=cos? a4+ 8¢cos?asinae— 8cos asin?eg—1sinda.
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On equating the real terms on each side, and also the imagi-
nary terms, separately, we have at once

co88 a=cos® a — 8 cos asin®
= 4 cos® ¢« — 3 cos a.
sin8a =38 cosasin a—sinda
= 3 8in a — 4 sin? a.
The functions of 4 « and of higher multiples of « are as readily

found. The simplicity and beauty of the method appears on
comparison with that of Art. T1.

ExXAMPLES

1. Show that %:m(a—ﬁ)+idn(a—ﬁ).

2. Show that (oos 2""#+isin2—Ei')"=<>osa+i‘sina.
n n

3. Show that ((cos 2L &y gip 2hw #)"=cosa + isinw where & is

any integer.
2kr + o :

4. Show that the angle — has n different values as & takes the suc-
cessive values, 0,1,2,. - - n — 1 (n being a positive integer). Show also that
for all integral values of k outside these limits, the terminal sides of the angles
coincide with those of the n angles already found.

8. Since cos 0 + ¢8in 0 = 1, find the n different nth roots of 1, of which all
but one are imaginary. Making use of the tables of natural sines and cosines
compute for n = 2, 8, 4, 6.

6. Since cos v + is8in 7w = ~ 1, find the n different nth roots of — 1, of

which all but one are imaginary when n is odd, and all imaginary when n is
even. Compute for n = 2, 3, 4, 6.

74. Graphical representation of complex numbers. An interest-
ing application of De Moivre’s theorem is found in the graphical
representation of complex numbers, devised by Wessel, a Danish
mathematician, and published by Argand in 1608. The treatment
of this topic belongs rather to the courses in algebra and function
theory. (See Rietz and Crathorne’s « Algebra.”) Only so much
of the rudiments of the method will be developed here as possess a
trigonometric interest.

A pure imaginary is an indicated square root of a negative
number. A complex number is an indicated sum of a real number
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and a pure imaginary. All pure imaginaries can be expressed in
the form yt, and all complex numbers in the form 2+ ys. Here
t=V—1, so that 3= —1; while z and y are real numbers, either
rational or irrational.

Argand’s method makes use of a pair of mutually perpendicu-
lar axes. The Argand diagram must not, however, be confused
with the Cartesian scheme of codrdinates.

All real numbers, rational or irrational, are represented by dis-
tances from the origin to points in the horizontal axis, called now
the axes of reals, positive to the right, negative to the left. To
every real number corresponds a point in this axis, and conversely,
to every point in this axis corresponds a real number. Thus there
is said to be a one-to-one correspondence between the totality of
real numbers and the totality of points in the line.

All pure imaginaries are represented by distances from the
origin to points in the vertical axis, now called the axis of imagi-
naries, points above and below the origin giving, respectively,
positive and negative coefficients for the imaginary unit factor

i=V—1. Here again there exists a one-to-one correspondence
between the totality of pure imaginaries and the totality of points
in the vertical axis.

Notice that the origin alone, of all points in the plane, is on
both axes. The number zero belongs to both systems. With this
single exception, no pure imaginary can equal a real number, since
the directions of the two axes are essentially different.

In order to represent the complex number z 4 yi recourse must
be had to the method of adding coplanar but non-collinear directed
line segments employed in the graphical composition and resolution
of forces in physics. Since directed line segments may undergo
translation, the segment y¢ may be placed with its initial point
upon the terminus of the segment z. The complex number is
therefore represented by the right line segment (radius vector) v
from the origin to the resulting terminus of the segment yi. For
¥ =0 we have real numbers, for z=0 we have pure imaginaries.

As the lengths of the horizontal segment z and the vertical
segment y measure respectively the magnitudes of the reals and the
pure imaginaries, so the length of the radius vector v may be said
to measure the absolute magnitude of the complex number
v=2z+yi. This is called the absolute or numerical value of v,
and is denoted by the letter . Evidently all points on the unit
circle about the origin possess the absolute value 1.



COMPLEX NUMBERS 1056

The directed line ségment, or radius vector, v makes in general
an oblique angle with the axis of reals, and its direction is deter-
mined by the angle it forms with the positive axis of reals. This
angle is denoted by 6, and is called the amplitude of the complex
number. All points lying on the same radius have a common
amplitude, while radii vectores extending from the origin in
opposite directions have amplitudes differing by . All positive
real numbers have the amplitude 0; negative reals, m; pure

imaginaries, % or 37" .
The right triangle formed by z, y, and v yields the relations
r=vVa=3+43 6= arctani ’
z=1rcos b, y=rsiné.

‘We may write interchangeably,
v, or z + yi, or r (cos 8 4 ¢ 8in §).

The expression cos 8 + ¢ sin 8 consequently denotes a unit segment
(complex unit) with the amplitude #, while r is a purely arith-
metical factor.

Conjugate complex numbers, z + yi and z — yi, evidently have
the same absolute value and amplitudes which are negatives of
each other.

Addition is effected graphically by placing the initial point of
the second segment upon the AY
terminus of the first and con- ,
necting the initial point of the -
first to the terminus of the 7
second. Thus in Fig. 70, 2

[}
)
(]
V=047, i

—

= (zl+xﬂ) + i(yl +yg)~ Fi1a. 70.
The values of  and @ in terms of r,, r,, 6, and 6, are readily deter-
mined, but exhibit little of present interest. Suffice it to point
out that

r<ri+ry
0+6,+9,
Subtraction reduces at once to addition on reversing the sub-
trahend segment.
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On attacking the problem of multiplication, we must define
the product of a directed rectilinear segment by the imaginary
unit ¢ as a segment of equal length turned through a positive
right angle. Thus v= 2+ ¢y =7 (cos @ + ¢ sin §) multiplied by ¢

gives
v=—ytiz= r[cos (’zr +0) + isin("?; +0):]-

The absolute value is unchanged, while the amplitude is in-
creased by"—;- This is consistent with the original scheme of rep-

resentation, since reals multiplied by ¢ give pure imaginaries, and
these multiplied by ¢ give — 1 times the original, ¢.e. the original
radius vector reversed.

Multiplying a directed segment by a positive real number
simply stretches it, multiplying its length and leaving its direc-
tion unchanged. Multiplying

v=z+ iy =r (cos 0 + isin 8) by &, we get
v/ =kv=kz + tky = kr (cos 8 + i sin ).
The absolute value is multiplied by the factor k, while the ampli-
tude is unchanged.
Multiplication of one complex number by another is effected

by combining the two processes just described, applying the asso-
ciative and distributive laws. Thus

v=10y 9= (2 +iy,) - (T3 + iyy)
=2, (Z3+ 1Y) + 1y, (73 + ¥y,)
= (#1%3— Y1¥2) + 1 (7,95 + 7¥,)-
Using the other notation and applying De Moivre’s theorem,
v=10, - v3="r;(cos 8; +isin b)) - r; (cos 8, + ¢gin §,)
=77, - [cos (0, + 8,) +isin(d,+ 6,)].

Figure 71 illustrates the multiplication of 5—2¢ by 2+ 8+.
The product is shown to be 16 4-11¢. We have then the law that
the absolute value of the product of two complex numbers equals
the product of their absolute values, while the amplitude of the
product equals the sum of their amplitudes.
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The inverse process of division is readily performed, with the

ult el
- v==0FTW _H%at 9, ;T — 0l
v Tty ozt oy T+ yq?
or p=01="1 (cos 8, + i sin 8,)

v, r,(cosf,+isinb,)’
v="[cos (6, — 6,) +1isin (8~ 6)]-
2

The absolute value of the quotient is equal to the quotient of
the absolute values, while the amplitude of the quotient is equal
to the difference of the amplitudes.

We have further,

v = v," = r,*(cos nb, + ¢ sin nb,).
The absolute value of ]
the power is equal to
the power of the abso-
lute value, while the
amplitude of the power
is equal to the ampli-
tude of the number
multiplied by the index
of the power. Here
“power ” is used to de-
note the result of affect-
ing the number by the 7] 7/
exponent =, whatever ;
the value of n. This ~ /
includes both involu- o~
tion and evolution. In
particular let n be the
reciprocal of a positive integer m. Then

'Y

Fia. 71.

1 . .
V= V- ”1 =yym= Ly Ty (cosgl +2 smgl)-
m m.

But v,.is just as well and exactly represented by

r[cos (2 km + 0) + isin (2 kmr + 6)],
where k is any integer. Thus the mth root just found is only one
of an infinite number, all given by the form

”lé = 'V;l[cos M +1isin 2’”"—1:'?1]’
m
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in which % assumes all integral values. This form gives m dif-
ferent values for the root, corresponding to k=0, 1, 2, ..-.m—1.
All the others are repetitions of these m roots, since the terminal
sides of all the other amplitude angles will coincide with the ter-
minal sides of the m amplitudes specified.

Hence every complex number has m different mth roots, whose
common absolute value is the arithmetical mth root of the absolute
value of the number, while their amplitudes have the m different
values,

Ql, 21r+$, 4"'"‘91,..., 2(m—1)1r+£l’
m m m m

all less than 2.

In the special case of any positive real number z,, whose am-
plitude is therefore zero, we obtain m different mth roots with the
common absolute value ¥r,, which is called the principal value of

Vz,, and the m different amplitudes,

0,27 4w 6  2(m—D)w

’ ’ ’
m m m m

Only one of these is real, the first, and it is called the principal
mth root of the positive real number.

The student should construct figures to illustrate the foregoing
theorems. Still another analytic notation for complex numbers
will be brought out in Art. 75.

ExAMPLES

1. Represent by Argand’s diagrams the numbers 2, — 8, 81, — 44, 8 + 51,
4-8i —2+4i, —5-8i,4+V—-38 V6 -V_2

2. Write the numbers the termini of whose radii vectores have the Carte-
sian codrdinates (3,4), (-38,2), (7, -8), (-5 -2), (6,0), (0,5),
(—2,0), (0, —8), (0,0), (V3, V5).

3. Find the absolute values and the amplitudes (expressed in degrees and
minutes) of the numbers in examples 1 and 2.

4. Describe the situation of the number points which have: (1) the
common absolute value 3; (2) the common amplitude 30°; (8) the amplitudes
45° and 225°.

5. Perform graphically: (8+4i) + (7—2¢); (—8+21) + (6-31i);
(T—-8)—(44+2); 8-24)—(—-6-384i); (5+2i)+ (8—4i) —(6-381i).

6. Perform graphically, taking the first factor in each case as the multi-
plier: 3. (5+24d); ¢.(8+564); 2i-(6-84i); —4.(2+51); —6i.(8+2i);
(4+29) - (B+44i); (B+4i)-(4+29).
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2l4+i, 6-—17i
3+2i" 4-3i

7. Construct the quotient of

8. Construct: (3 +24)%; (—%+ ."_g_g)'; (1 =i Va)R; i,
9. Find by construction: V7—24i; v— 110 +120¢; (—5+ 1203
vV—4; V8; Vie.
10. Write the general solution of the binomial equation: z* — a* = 0.
11. Find all the roots of the equations 22 —1=0; 224+ 1=0; 22— 1=0;
z2—-8=0.

75. Exponential values of the trigonometric functions.  The
first form of De Moivre’s theorem, Art. 73, Eq. (1), may be written

bolically,
Y R =F+s),

which is read, function of « times (the same) function of 8 equals
(the same) function of («+ 8); or, the product of the (same)
functions of two numbers equals the (same) function of the sum
of the two numbers. Now this is identically the characteristic
relation or law governing the exponential function, that is, a
function of the form a*; thus,

a* - af = a°*8,

For reasons discussed in Art. 77, it is found that instead of the
more general function a®, we must place

cos a + 1 8in ¢ = e, (¢))

where ¢=2.71828183 --- is the base of the Naperian, or natural,
system of logarithms given in Art. 23.

Note that the law of exponents, derived for positive integral
exponents, and assumed to hold also for negative, fractional, and
irrational exponents, is still further assumed for exponents which
are pure imaginaries and complex numbers. As in the former
cases, the significance must be determined in conformity to the
action of the assumed law. Indeed, the law defines the function.

1

Since cos¢ —ising=——~———
CoOsSa+t8lna

, we have also

cos ¢ — ¢8in = e~'. €3]
Adding and dividing by 2, we obtain
cosa= _e_‘l‘)ei 5 (3)

-
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again, subtracting and dividing by 27,
fa __ e—‘q

. ¢
= . 4
sin « oF “@

These values were first given by Euler in 1743. Starting from
these two exponential values as fundamental definitions, and de-
fining further

tan @ = 8in &
cos

o= —

’ a= e T ’
an a cos a sin «

it is possible to develop all the laws and formulas of trigonometry
as contained in Arts. 59 and 63-T1, quite apart from any geo-
metric meaning attached to the functions or their argument a.
The analogous derivation of those trignometric theorems de-
pendent on the periodicity of the trigonometric functions involves
the periodicity of the logarithm, and is therefore postponed until
the later mathematical study of the student.

A third notation for complex numbers now becomes manifest;
for

v=2x+ iy =r(cos 8 + i sin ) = re®.

The consequent theorems regarding the absolute values and am-
plitudes of products, quotients, powers, and roots follow readily,
and should be worked out by the student.

ExXAMPLES
1. Find the exponential values of tan e, cot &, sec a, csc a.

2. Derive from the exponential values the laws sin? a + cos® ¢ = 1, ete., of
Art. 59.

3. Derive from the exponential values the formulas of Arts. 63-71.

4. Derive from the exponential notation the laws for the absolute values
and amplitudes of products, quotients, powers, and roots of complex numbers.

76. Hyperbolic functions. Closely allied to Euler’s forms of the
last article are the two interesting and important forms,

e‘-;e" and e"—ée“.
They are called, by analogy, the hyperbolic cosine and hyperbolic
sine. Thus, employing the customary notation,

el + e_l.
2

—e*

cosh o = 2

, 8inhea = i
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The remaining hyperbolic functions are defined from these, just as
in Art. 76:

sinh «

ha=
tanh a cosh a

3 esch @ =

1
cosh o

A very simple relation exists between the hyperbolic and the
circular (i.e. ordinary trigonometric) functions. Evidently

, coth & = ta.:h o sech & =

sinh «

cosh & = cos ia,
" sinh a = — t sin ta,
tanh ¢ = — ¢t tania;

and conversely,
co8 a = cosh e,

8in & = — i sinh fa,
tan ¢ = — ¢ tanh ta.

To each formula of Chapter VIII corresponds a formula for the
hyperbolic functions, which may be deduced either directly from
the exponential definitions, or by substituting the values just
given in the formulas for the circular functions. The student
should derive these formulas by both methods.

The analogue to De Moivre’s theorem is

(cosh @ + sinh a)* = cosh na 4 sinh ne.

Cosh « and sinhe possess an imaginary period 2ari, since
e* = ¢**2" [ being any integer. (See treatises on the theory of
functions.)

77. Exponential and trigonometric series. In the present
article values in the form of infinite series will be derived for
certain exponential, logarithmic, and trigonometric functions.
In the proof, however, the use of the binomial formula and the
manipulation of the series introduce a lack of rigor requiring ex-
tended consideration in the subsequent courses in algebra, the
calculus, and the theory of functions.

(1) Ezponential series.

Expanding by the binomial formula,*
(1+£>”=1+l.f+ﬂn__12.g.*_n(”—l)("'"z) .z_s+

n, 1l n 21 n? 3! n?

# The symbol |k, or k!, is used to denote the product 1.2.8... k, where k is
any positive integer, and is read ¢ factorial £ .
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1\ 22 1 2\ 28
=141 F41 (1= ) G (1= )(1-D) 5+
2

Now as n becomes infinite, the binomial factors (1 —_ —), (l - —),
n n,
etc., all approach the common limit 1, and we shall have, in the

limit,
= lim z
¢ ""[(1+n)] L+fi*gitat @

This series is convergent for all finite values of z. (See Rietz and
Crathorne’s “ Algebra.”)

For z=1 we get .
1,1 1 @

e=ltqitotgtat-

1.1.1 1
=141
1+1+3+5+3it 0™

The terms diminish rapidly in value and, when expressed deci-
mally, the value of e is found to be 2.71828188 ...,

The series for ¢* is valid also for negative and imaginary values
of z ; thus, substituting successively — z, 1z, and —¢z for z, we have

—2 = —.E_ i’.—g cen
er=l-grtei—gt
3 2t B z 22 & 2
F=l-otaimt ot [1_1 sitEIT Tl ]
A A B Tz & 2 o
-tr e — s JUE A
ce=l-g+namt '[11 CIRN T TR ]

(2) Logarithmic series.
From the expansion just obtained for e* can be derived a series

for log, (1 + ).
Since®* u* = e*1%8%,

we have wuf=1 + (log, ) + (log, u)? + (log, u)d 4 -
Placing w=1+y,
(A +9)" =142 log, (1 +9)+ 5 [log (1+)]*

+ 2 [og, (1 +9)]* + -~

*Let w=u* Taking logarithms to base ¢, we have log,w =z log,4. Now
taking exponentials to base ¢, w0 = us = e® log,
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Expanding the first member by the binomial formula,
a +y)’=1+11y +Z z! — Dy +”("’-13)!(”'“2)_,,s+

Picking out and equating the coefficients of z in the two expres-
sions, the required expansion is obtained,

log, 1 +9)=f-L+L- Ly .. @

This series is convergent for - 1 <yZ2+1l
If w=1log,u, we have a*=u; whence, taking logarithms to

base e, wlog,a =log,u. Therefore w =1log,u = - log, u.

Substituting from (3) we see that
= y_ .'Z £ U )
log.(1+ )= g.a ( +g-T+ €Y
(8) Trigonometric series.
From De Moivre’s theorem
cos mf + ¢ sinmb = (cos § + 4 sin )™,

Expanding by the binomial formula and separating the real terms
from the imaginary, :

cos mb + ¢ sin ml = cos"'O—’Lm_—l—zcosHOsin’ 6

1
log,a

m(m 1(m — 2)(m — 3)
41

+ z(l—! cos™18 gin §— ™™= 13)'('"' 2) gos™3 0 sint + - )

Equating separately the real and the imaginary parts,
cos mf = cos™ 8 — 11_(m_—-1_)_ cos™ 38 sin28 + ...

cos™ 4@ gin* 4 ...

sin mf = ﬁ cos™ 16 sin 6 — m(m —1 6)!(7" 2) cos™ 80 8in%8 + .

Place now
ml = a, 80 that 6 =2%;
m

co8 & = cos™ (ﬁ) - M cos™~2 <i> 8in? <ﬁ) + ooy
m 21 m m

gin & = cogm-1 (i) sin (ﬁ)
1! m m,

_m(m— 1??!("' =2 cos”“s(i) siu“(;">+
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Now let 8 approach the limit zero and m become infinite, while
still obeying the condition that mé@ =«, where « remains finite.

By Art. 12, cos%, cos’,%, etc., approach the limit 1 as m becomes

infinite, and in ihe calculus the same is shown for cos™ (—-),

cos™"1 (ﬁ), ete.
" sin 8

. . a = .8sng
Again, m sin (;) 7’

2
]

m(m — 1) sin3 (m) = a(a—0)- (snﬁ

m(m —1)(m — 2) sin’(i)= a(a — 0)(a—26) - (Sig ”)’, ote.

Since 12,%2= 1, the limits approached by these expressions, as

0 =0, are «, a3, o®, etc.
Making these substitutions, we obtain, in the limit,

A A B
cosa_1—§+4_!_a.+..., ®)
ing® 9 o o

sime=q—grte—nt o Q)

These series are convergent for all values of a.
Tan « may also be expanded into the series
& & 17
tana =3+ %+ + e+ o M
It will be noticed that the series for cos « contains only even
powers of «, while those for sin « and tan a contain only the odd
powers of «. (See the third example worked out in Art. 62.)
The assumption of Art. 756 may now be justified. For, on sub-
stituting for e*, ¢~*, sin 2, and cos z their expansions in series, we
obtain
€08 z + 1 5in z = €%,
COBZ —t8in z= ™%,
@y iz
and CO8 z = e—'*-:)—e—-,

-
i __ p-ix

ginz =2
2% -
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(4) Hyperbolic series.
From the analogous relations the expansions for the hyperbolic
functions are readily obtained.

et e 2 A o

Thus cosh ¢ = 3 1+2v+ et ®
. e —e B ob
sinh o =-— 11+3r+5z+71+ ®
ExAMPLES

1. By substituting ~ & for @, find the series for sin (— a), cos (— «),
tan (— a), and by comparison, verify the corresponding relations of Art. 62.

2. By substituting ie for @, verify the relations of Art. 76, cosh & = cosia,
ete.

3. Using two terms of the expansions for sin« and cosa, and retaining
only powers of @ below the fifth, obtain an approximate verification of the fol-
lowing formulas:
sin?e + cosde =1, sin(a + B)= .-, co8 (& + B)= -, 8in2 & = ..., cOB2 gt = +-e.

4. Do as required in example 8 for the hyperbolic functions.

5. Repeat examples 3 and 4, using three terms of the series and retaining
powers of a below the seventh, thus arriving at a closer approximation.

78. Computation of trigonometric tables. The numerical values
of the sine, cosine, and other trigonometric functions of angles
from 0° to 90°, as tabulated in Table III, may be calculated by
means of various trigonometric formulas, or better, by the use of
the series derived in Art. 77.

Euler gave the following series, carrying the computation to
28 decimal places and a corresponding number of terms: Place

T . . .
& =m - —, in the series for sin « and cos «; whence

2

gin (m- g) =1.570796 m — 0.645 964 m?

+ 0.079 698 m® — 0.004 682 m”
+ 0.000 160 m? — 0.000 004 m1
F o e e e e ey

co8 (m . ’5’) =1.000000 —1.283700m?
+ 0.258 699 m* — 0.020 863 m*
+ 0.000 919 m8 — 0.000 025 m1°

+ .
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We need to calculate the sines and cosines of angles up to
45° only, so that m is a fraction and always less than 4. The
terms of the series converge rapidly and a few terms suffice to give
values correct to a small number of decimal places.

More extended discussion of this topic may be found in Hob-
son’s “ Trigonometry,” Chap. IX; Todhunter’s “Plane Trigonome-
try,” Chap. X; and other advanced treatises on trigonometry.

The series for log (1 + y) converges too slowly for convenient
calculation, but a modified form is easily obtained. Manifestly

log(l—-y)=—y—%_%a_"i_4_

and
logi—t§=log(1+y)—log(l—y)
Y N |
Place y=—_1_,whence 1—t3=”+1; then
2v+1 11—y v

log 2+1 ( 1 1 1 -,
Y =Anats@r T s@vr ¢t )

or

log (v+1) =logv +2[ L~ + 1 g +]

® 2041 8(2v+1)* 5(2v+1)°

This series converges rapidly and by it log 2 can be computed

from log1 = 0, log 3 from log 2, etc. Logarithms of composite

numbers can be checked by adding the logarithms of their factors.

79. Proportional parts. In using the logarithmic and trigo-
nometric tables it was assumed, as stated in Art. 26, that for
small differences in the number, the differences in the logarithm
are proportional to the differences in the number, and that like-
wise, for small differences in the angle, the differences in the sine
(or other trigonometric function, or logarithmic function) are pro-
portional to the differences in the angle.

We have

log (z+8)—logz=loga%—8= log (1 +§;)

58, 8 _ &
z 222 382 42
) (Approximately for small
z values of 8.)

4 e

4
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Therefore, we have approximately
log(z+8)—logz_ 8 /z_8& (1),
log (z+48,) —logz~ §/z &’

for small differences.
Again,
sin (84 6) —sin0=2cos(9+g) sin-g-

=cosf.8. (Approximately for small
values of 8.)
Hence, approximately

gin (4 8,)—sind _§ cosd 3 9
sin(0+8,)—sinb §,cos0 3, @

For the other functions, the proof follows exactly similar lines,
and can easily be supplied by the student.

Full discussion along this line may be found in Loney’s « Plane
Trigonometry,” Chap. XXX ; Lock’s *Higher Trigonometry,”
Chap. VIII; Hobson’s “ Trigonometry,” Chap. IX; etc.

80. General inverse functions. In Art. 14 only acute angles
were under consideration, so that the relations

m = sin a, « = arcsin m,

expressed a one-to-one correspondence. In other words, under
the condition that

0° < 90° 0zmzl,

to each value of « there corresponds one and only one value of
m and conversely.

On considering the general angle, it became evident that to
any one angle there corresponds one and only one value of the
sine (or other function), but that to one value of the sine (or
other function) correspond many angles. We define arcsin m,
arccos m, arctan m, etc., as the numerically smallest angle having
the given sine, cosine, tangent, etc. It follows that arcsin m,
3
while arccos m and arcsec m always lie between 0 and + .
These are called the principal values of the general inverse func-

arctan m, arccot m, arccsc m always lie between — % and 4
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tions Arcsin m, Arccos m, etc. As results of Arts. 61, 62, we
may write, if % is any integer,
Arcsin m = 2 kr 4 arcsin m,
Arccosm = 2 b + arccosm, .
Arctanm = kr 4 arctan m,
Arccot m = ki + arccot m,
Arcsec m = 2 kr 4 arcsec m,
Arcese m = 2 kw + arcese m.
Similar relations exist for the inverse hyperbolic functions, the
periods being imaginary, 2 knt and k.
From the relations of Art. 76 may be derived the following :
arccos m = (1) ¢ inv cosh m,
arcsin m = — ¢ inv sinh im,
arctan m = — ¢ inv tanh ¢m ;

and
inv cosh m = (&) ¢ arccos m,
inv sinh m = — ¢ arcsin im,
inv tanh m = — ¢ arctan tm.

81. Logarithmic values of inverse functions. Since the circular
and hyperbolic functions are expressible as exponential functions,
it would seem that the inverse functions should be expressible as
" logarithmic functions. Such is, indeed, the case, and the desired
values may be found by solving for « the forms given in Arts. 76
and 76.

(1) Cireular functions.

1f, for example,

e
2¢ "’

z=6na=

we have the quadratic equation in e*,
e — 24zee -1 =0,

whose roots are
ee=iz + VI - A
Choosing the upper sign, and taking logarithms to base e, we
got ta =log (iz + V1—-12%),
whence a=arcsinz=—1 log (iz+ VI—2%)

gives the principal value of the arcsine.
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(2) Hyperbolic functions.

As may be expected, the values of the inverse hyperbolic
functions are real in form. Thus from
e —c

£ = ginh ¢ = 7

we get, on solving,
a=invsinhs=log (z 4+ VA+1).

EXAMPLES
Obtain

1. arccosz =—ilog (z + V29--1).

1. 144z
. = - l .
2. arctanz 2; Ogl—iz

3. inveoshz =1logz(z + V28 —-1).

l+z‘
1-2

4. invianhz = % log
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1. To what quadrant do the following angles belong: 560°, 853°, 1030°,
- 425°, —1260°?

2. To what quadrant do the following angles belong :
13;-3, o5%, _%’ _ 10;-".,

3. Reduce to radians: 75°, — 300°, — 250°, 2000°, 465° 20'.

4. Reduce to the degree system : 4%, — 6%, %".R, %, __7%‘.'.

5. Find the lengths of the arcs subtended by the following angles at the

center of a circle of radius 6: 45°, 120°, 270°, -34LR, 5—;—‘!, 5_;—3

6. A polygon of n sides is inscribed in a circle of radius r. Find the
length of the arc subtended by one side. Compute the numerical values if
r=10and n=38, 4, 5, 6, 8.

7. Taking the radius of the earth to be 4000 miles, find the difference in
latitude of two points on the same meridian 300 miles apart.

QxR SxB
5 s

8. Find the difference in longitude of two points on the equator 1200
miles apart.

9. Find the distance in degrees between two points, one of which is 800
miles due north of the other.

10. A city is surrounded by a circular belt line 5 miles in radius. How
long will a train require to go at a speed of 20 miles an hour from a station due
east of the center to one due northwest, if the motion is clockwise; if counter-
clockwise ?

11. Find with the protractor the angles formed successively by the radii
vectores of the points (3, 0), (2, 4), (-8, 5), (0, 8), (-4, 2), (-2, 1), (5, —3),
(8, 0).

12. Find with the protractor the angles of the triangles formed by the
abacissa, ordinate, and radius vector of each of the following points: (4, 4),
@, 38), 8, —3), (—2,2), (—4, —8).

13. Find by measurement the codrdinates of the point whose radius vector
is 4 and makes an angle of 80° with the positive z-axis; 5 and 120°; 8 and 225°.

14. Find by measurement the length and inclination angle of the radii
vectores of the points whose codrdinates are (2, 5), (- 5, 12), (- 8, — 15).

120
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15. If the earth were assumed to be a plane, and one degree of latitude or
longitude were 60 miles, what would be the distance and direction from a point
in 20° N. lat., 60° E. long., to one in 50° N. lat., 80° E. long.; from a point in
80° S. lat., 15° E. long., to one in 45° N. lat., 40° W. long. ?

Nore. This assumption is made by navigators as a basis for what is known as
Plane Sailing. In Great Circle Sailing the earth is considered a sphere. Let the
stuadent devise a system of cotrdinates for the latter.

16. Find by measurement the six trigonometric functions of 36°, 155°
285°, — 130°.
17. Find by measurement the following angles: arccot § and of 1st quad-

rant; arcsin § and of 2d quadrant ; arccos (— 0.3) and of 8d quadrant; arcsec
0.6 and of 4th quadrant.

18. Find the lacking functions in the following table:

AnGLE Bixm Cosixm Taxexnt |CoraneEnTt| SECANT COSECANT | QUADRAXT

« .y 1

8 ] v

Y -1 I

8 3 I

0 -2 III

¢ 8 1

19. Find the value of —%3% 4 _8M& 4 nresin 3 and of 2d
quadrant. l—tana 1—cote 5

20. Find the value of tanfB+secf—1 _: ifﬂ:amcsc(—l5—3)and of 8d
quadrant. tan 8 —sec 8 +

21. Find the value of 'an2®—sin®a ;¢ . arecot( - 1) and of 4th quad-
rant. . cosd 2

22. Find the value of 1 F €08y —28ecy ;4 ¥ = arctan 9 and of 1st quad-
rant. 8 +cosy+2secy 40

. -
23. Express SM &+ €08 ® 3 4ormg of tan a.
sec3® 4 csc*a

24. Express :i;;ill_——%g in terms of cos 8.

(1 —cosa)(1 +seca) .
25. Express (1 —sin a) (1 + 80 @) in terms of tan «.

26. In the following identity transform the first member into the second,
(1 +tan y)(cosy —coty) _
(1 + cot y) (8in y — tan y)

—cot y.
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27. Show that (1—tan®(1+ cote®)
(1 + tan @)(1 — cot )

in*B+cost8  gin®B—costB _ o .
28. Show that :;:11’3+°°°’3 0?8 —oost § = 2sin? B cos’ 8.

Solve the following equations and find the angle in degrees :

29. 4sinfy—tanty=0. -

30. 2tan?q —seca =4.

31. 4cec B +cot*B=5.

32. tan?y + 8cotty=4.

33. sin*e+ain?*B =14, cos®a + cos*S=0.

34. 2c08*a +8in*8 =2, sin & + cost 8 = 0.

35. For what range of values of a between 0 and 2  is sin @ + cos & posi-
tive ; negative?

36. For what range of values of 8 between 0 and 2  is tan 8 — cot B posi-
tive; negative?

37. Show that tan y + cot y must always be numerically greater than unity.

38. Trace the variation of sin?@ as § varies from 0 to 2 x.

39. Trace the variation of cos® 6 as 6 varies from 0 to 2 .

40. Trace the variation of 1 — sin 6 as @ varies from 0 to 2 ».

41. Trace the variation of 1 — cos § as 8 varies from 0 to 2.

42. Find by inspection log, .625, log,, 27, log,;, .008.

43. What numbers correspond to the following logarithms to base 9: — 8,
-2, -15, —1,0,.5 1,2, 8?

44. In the formula W =147 o [(“-’—’)»-%l - 1], which gives the work

n—1 D1

of an air compressor, find W whenn =1.8, p, =14.7, p, =72, 0, =6.
45. Work the following with the slide rule:
2 x 187 x 14 (120)1-3 42 sin 27°
LeL 2= ) (=) =2 == =
@) “HaxTis ® (g @ gz =
46. Solve forz: 5™ =6; 8-1=T7,
Quenry. Does the result depend on the base of the system of logarithms
used ?
47. Solve forz: 3% —4.3*+3=0.
48. Find the amount of $2000 in 5 years at 4% compound interest.
49. At what rate, compound interest, will $ 45,000 amount in 8 years to
$60,000?
80. In how many years will a city become three times its original size if
it increases } each year?
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51. Derive the formulas of Art. 42 from those of Art. 40. [SuaeEsTION.
Multiply respectively by a, b, and — ¢ and add.]

52. Derive the formulas of Art. 40 from those of Art. 42. [SveeEsTiON.
Solve for a cos 8 and b cos @ and add.]

53. From the law of sines, Art. 41, show that b—c_ s.in B- siny
b+c sin B+ siny

54. By applying the formulas of Art. 70 to the result obtained in example
53, derive the law of tangents of Art. 43.

85. From the formulas of Arts. 42 and 68 derive the results

. f(:—b)gs—c), @ _ ’s (s —a). & _ ,‘s-—-b“a—c)_
sm2_ be ,0002_ e ,tan2_ (- 9)
86. Draw the graph of sin § + cos @ and thus trace its variation. What

values of 6 cause the given expression to assume maximum values ; minimum ?

57. Draw the graph of tan 6 + cot 8 and thus trace its variation. What
values of 6 make the given expression a maximum; a minimum ?

88. Draw the graph of arcsin 4 and trace its variation. [SuaarstIoN.
Lay off the values of u as abcissas, of arcsin u as ordinates.]

59. Draw the graph of arccos u and trace its variation.
60. Draw the graph of arctan uand trace its variation.

61. Draw the graph of arccot u and trace its variation. What discon-
tinuities are exhibited by the functions of examples 58-61?
62. Find from the table the values of cos625°12’; of gin 288°2%; of
tan 824°6’; of cot 921°382'.
63. Find without reference to the table the value of
cos 285° cos 845° + sin 195° sin 465°.
64. Find without reference to the table the value of
tan 205° cot 385° + tan 295° cot 115°,
65. Find all the values between 0 and 2 » of
arcsin (-—-é) H arocos(—é); a.rchn%.
66. Find all the values of « between 0 and 2 = if
. 3 . s a_ 1 . «
="_: if tan 2 =~ V3; if “=z—;ifcot .=~ 1.
sin8 o \/Q’lf « H eos2 \/_2_, eo8 1
67. Find the value of sin (2« + 8) if « = arcein 4 and of 2d quadrant,
B = arctan } and of 1st quadrant.
68. Find the value of tan (8 @ + 2 8) if & = arcsin } and of 2d quadrant,
B = arccos fy and of 4th quadrant.
69. Derive the formula for sin (¢ + 8 + ) in terms of sine and cosine.

70. Derive the formula for cos (« + 8+ y) in terms of sine and cosine.
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71. Derive the formula for tan (¢ + 8 + y) in terms of tangent.
Discuss the results of examples 69-71 incasex + 8+ y ==

72. In the results of examples 69-71 put 8 =y = «, and thus obtain the
formulas for sin 8 &, cos 3 &, and tan 3 a.

73. Find the value of cos (8 « —2 f8) if @ = arccos (— %) and of 3d quad-
rant and 8 = arctan } and of 1st quadrant.

74. Find the value of cot (4@ — 8) if « = arcsin ¢ and of lst quadrant
and B = arccos (— 1§) and of 2d quadrant.

75. Find the value of sec (¢ + 8) if @ = arctan {5 and 8 = arcsin I, both
of 1st quadrant.

76. Show that sin 2 = —2 130 &

1 + tan? o

77. Show thatcos2a = L= t8n°a

1+ tan?a
78. Show that tan(45° - g) = ¢8c & + cot a.

79. Show that cot(45° - 12‘) = ¢8¢ & — cot &

Transform into products or quotients the following expres-
sions (80-84):

80. cot @ + tan a.

8l1. cot e — tan a.

82. 1+ tanctan 8.

83. cota — tan 8.

g ot + cot 8

t.ana+t.a.nﬁ'
If « + 8 + v = o, show that (85-87)

L
2
Art. 70 to the first two terms and Art. 67 to the third term.]

85. sina+ sin B + siny = 4cos = cos g cos g [SueeesTioN. Apply

86. coeu+cosﬂ+cosy=1+4singsingsin§~

87. tana + tan 8 + tan y = tan a tan Stany. (See example 71.)

88. How does it appear from example 87 that either all three angles of a
triangle are acute or else two are acute and one obtuse? (Consider the signs.)

89. How does it appear from example 87 that if one angle of a triangle
is obtuse, it is numerically nearer 90° than either of the acute angles?

In the following equations find the angle:

90. tan2 atana=1.

91. 8in(60° - B) —8in (60° + 8) = 4.
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co86y—cos2y=0.
reind =8, rcos @ = 15.
rein fcos p = 8, rsin03in¢ =4,rcos =12

95. Show that sin B gin 27 gin 3 X gin 475,

6 & 5 16

28%

96. Show that cos 2.7 cos 4-1 cos 3T oo 147 _ 1,

15 15 16 16
97. Show that2sing=;};\/l +sina + V1 —sina.

98. Show that 2cos g=;1;\/1 +sine F V1 —sin a.

99, The formula for the horizontal range of a projectile fired at an eleva-
tion & with a muzzle speed u, is ﬁ; 8in2 «. Show that the maximum range

is attained for an elevation of 45°

100. A triangle is formed by two given sides of constant length & and ¢,
including a variable angle «. For what value of a« is the third side a maxi-
mum ; the area & maximum?

SECONDARY TRIGONOMETRIC FUNCTIONS

In addition to the trigonometric functions defined in Art. 6,
82, and 54, there are certain other expressions which are also
functions of the angle. While of less importance than the six
primary functions, an investigation of their properties will be
valuable, not only for the results obtained, but as a review of the
fundamental principles of trigonometry.

‘We may define, then,
versed sine ¢ = vers a =1 — cos «,
coversed sine « = covers « = 1 — sin «,
exsecant ¢ = exsec e == seca — 1,
excosecant « = excsc a = cs¢c &« — 1.

101. By reference to Fig. 58, show that

z
versa:l——v, coversa=1—%,

exseca:g-l, excsea =2 — 1.
z v
102. By reference to Figs. 60-63, show that, in line representations,
versa = MA, covers « = NB,
exsec ¢ = PT, excsc & = PS.
103. Determine the signs and limitations in value of each of the four
secondary functions in the different quadrants.
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104. Show that if the quadrant of the angle and the value of any one of
its ten functions are given, the values of the other nine can be found.

105. Find the values of the four secondary functions, given:
a = arcsin (— Af) and of 3d quadrant; B = arccos §§ and of 4th quadrant;
y = arctan (— 14%) and of 2d quadrant; 8 = arccot 4§ and of 1st quadrant.
106. Find all ten functions, given:
« = arcvers }% and of 4tk quadrant; B = arccovers 4§ and of 2d quadrant;
v = arcexsec J& and of 1st quadrant; 8 = arcexcsc 3¢ and of 34 quadrant.
107. Trace the variation of each of the secondary functions as the angle
varies from 0 to 2 .
108. Draw the graph of each of the secondary functions. What discon-
tinuities, if any, are present.

109. Find the secondary functionsof k- 2, fork=1,2, .-- 8.

T
4’
1'

110. Find the secondary functionsof k.=, fork =1, 2, ... 12,

111. Verify the relations of Art. 61 for the secondary functions.

112. Determine the relations analogous to those of Art. 62 affecting the
secondary functions. [SuvaeesTioN. Use Art. 60.]

113. By means of the cosine series, Art. 77, Eq. (5), show thsthm

exsec § _
~6 0

versf =0.

114. From the preceding example, show that lxm

115. Show that
vers @ 4 covers & _ exsec ¢ + excsc & _ 2 vers @ covers & ,
vers & — covers @ exsec & — €XCSC &  Vers & — covers «

116. Show that exsec? 8 + 2 exsec 8 = tan? .

117. Solve and find y in degrees: 2 vers y(2 — versy) = 1.

118. Solve and find § in degrees: tan?8 + exsec § = 4.

119. Show that, if & is the angle at the cexnter of a circle of radius r, the
ordinate at the middle of the chord is given by the formulam = r versg. Find
m for r = 1433, ¢ = 11° 82/,

120. If r is the intersection angle of two tangents to a circle of radius r,
the shortest distance of their point of intersection from the arc is given by

the formula d = r exsec é Find d for r = 5780, r = 6° 82/,

121. Reduce the first member to the second in the identity
(exsec & + vers &) (exesc & + covers &) = sin & cos &
122. Show that vers 2 & = 2 sin? .
2sinta .
1-—2sintex
124. Show that excsc2 @ cos2 & = fan «.

123. Show that exsec 2 a=
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125. At points in a straight line ordinates are erected such that for each
point (z, ¥), # = vers (arcsin y). Show that the graph thus determined is a
circle tangent to the Y-axis at the origin.

126. At each point in a circular arc the radius is extended an amount equal
to the exsecant (in line values) of the arc measured from a fixed point in it.
‘What is the graph thus determined ?

127. Two equal circles have their centers in the same horizontal line. Show
that the horizontal distance between two points in the neighboring arcs is equal
to twice the versed sine (in line values) of the are, measured from the point of
-tangency.

128. Two tangents to a circle intersect at an angle r. Show that the dis-
tance of the point of intersection from the midpoint of the chord of contact
equals exsec v + vers r (in line values).

129. Show how the versed sine is of practical use in staking out a circular
railroad track passing through three given points.

130. Show how the exsecant is of practical use in staking out a circular
railroad spur of given radius branching tangentially from a straight track.

Compute the missing parts of the following triangles, distinguishing right
from obligue:

a B ¥y a 4 ]
131. 87° 42.8' 90° 6244.8
132. 72° 25.6' 90° 64.863
133. 90° 875.84 2906.57
134. 54° 86.9 24.465 42.860
135. 1306° 36.8' 86902 37490
136. 68° 51.5/ 90° 7532.8
137. 90° 306.45 531.58
138. 90° 005428 | .006395
139. | 148°24' 7.4536 5.3648
140. 088456 | .028638 | .051524
141. | 126° 84.6 85° 25.3/ 2584.6
142. 24° 36.8' | 2.4657 8.6542
143, 80° 04.5' | 90° 80.007
144. 94° 46.8/ 84.086 52475
145. 03274 40586 .83208
146. 76°46.3’ | 83°88.7 8.4637
147. 90° 29346 53857
148. 29° 574/ 43° 52.6' 64.475
149, 17° 46.8/ 39475 20478
150. 86876 28467 48542
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151. In a given triangle a =280, ¢ = 420, y = 38°; find the radius of the
circumscribed circle.

152. In a given circle a = 68, b = 81, y = 54°; find the lengths of the bisec-
tors of the interior angles.

153. The sides of a given triangle are 220, 850,440 ; find the lengths of the
three medians.

154. In a given triangle b = 340, & = 48°, y = 63°; find the lengths of the
radii of the inscribed and of the three escribed circles.

158. A boat drifts in a stream whoee current runs 4 miles an hour due east
under a breeze of 10 miles an hour from the southwest. Determine the motion
during 85 minutes, if the resistance reduces the effect of the wind 80%.

156. Three forces of 1800, 2200, and 2700 dynes are in equilibrium; find
the angles they make with one another.

157. A helical spring is fastened to the door 16 inches from the axis of the
hinges, and to the jamb 4 inches from the same line in the same horizontal
plane. Find the length of the spring when the door is closed, open at 80°, 45°,
70°, 80°, 120°. Neglect the thickness of the door.

158. A cable 30 feet long is suspended from the tops of two vertical poles
20 feet apart and 15 and 18 feet high, and bears a load of 200 pounds hanging
from it by a trolley. Find the position of the trolley when at rest, and the
lengths, inclinations to the horizon, and (common) tensions of the segments of
the cable. Neglect the weight of the cable.

159. Let the data be as in the preceding example, save that the load hangs
from a ring knotted at the center of the cable; find the inclinations to the hori-
zon and the (unequal) tensions of the segments. Solve when the ring is
knotted at a point 12 feet from the lower end of the cable.

160. The eye is 40 inches in front of a mirror and an object appears
to be 85 inches back of it, while the line of sight makes an angle of 48° with
the mirror. Find the distance and direction of the object from the eye.
(Note. The angles of incidence and reflection are equal.)

161. The line from the eye to the object recedes from the mirror at an
angle of 82° while the object is 36 inches from the eye and 12 inches from the
mirror. Find the angles of incidence and reflection, and the point of reflection.

162. Two railway tracks intersect at an angle of 756° and are connected by
a circular “Y ” of 800 feet radius lying in the obtuse angle and tangent to the
two tracks. Find the distances of the points of tangency from the crossing and
the length of the «Y ”.

163. Two railway tracks, intersecting at an angle of 62°, are joined by a
circular “ Y ” in the acute angle and tangent to the two tracks at points 900
feet from the crossing. Find the radius of the “Y ” and its length.
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164. In setting a door frame 6 feet wide and 8 feet high, the vertical side is
found to be 2 inches (horizontally) out of plumb. Find the angles of the paral-
lelogram and the lengths of the diagonals. Is the diagonal of the true rectan-
gle the average (arithmetic mean) of these two?

165. The staking out of a certain building requires the setting of stakes at
the vertices of a rectangle 82 x 48 feet. A test of the trial setting shows the
figure to be a parallelogram whose sides are as given above, but whose diagonals
differ by 9 inches. Find the angle through which the longer sides must be
swung to correct distortion, and the
chord of the arc through which the
back corners must be moved.

166. A triangular roof truss is 80
feet long and divided into 8 equal seg- :
ments, by vertical members, as shown Fra. 72.
in Fig. 72. The height being 25 feet, what are the lengths and inclinations
to the horizon of the various members? .

167. The triangular roof truss shown in Fig. 73 is 60 feet long and 20
feet high. The bottom chord and rafters are divided into equal segments.
Find the lengths and inclinations of the members.

168. In order to determine the

exact location of the point & (Fig.

74), a base line AB is laid off due

north and south, measuring precisely

130 rods. Convenient intermediate

Fio. T3. stations are chosen, and angles meas-

ured as follows: ABC =36°35,

BAC =61° 10/, BAD =48° 54, CAD =17°16¢', DCE = 66° 36', CDE = 47° 41,

EDF =55°48', DEF =

73°12, FEG = 58° 32,

EFG="70° 2¢. Com-

pute the distances com-

posing the sides of the
triangles in the figure.

169. By projecting
the distances AC, CE,
EG (Fig. 74), perpen-
dicular and parallel to
AB, compute the east-
erly and southerly dis-
tances of G from A4;
find thence the direct
distance and direction of G from A.




FORMULAS

GENERAL TRIGONOMETRY

.cscu=,—1—
81N &
gece =1
CO8 &
(.‘«Otu=-L

cot a = (_:To_s__a .
sin @
sinda + cosfa = 1.
tan®a 4 1 = sec? .
cotd?4+ 1 = csc? a.
2 =¥ = 860°.
F (2kr + &) = F(e), k an integer.

F (Ic . ’—; + a) = 1 F («), k an even integer.

F(k -7—;:!: a )=+ co-F (&), k an odd integer.
8in (¢ + 8) =sin « cos 8 + cos e sin 8.
cos (& + 8) = cos @ cos 8 F sin @ 8in 8.

_ tanaettan B .
t;m(m:tﬁ)—lZFta.nazt;a.nB

cotacot B 1
cot (a — 7,
(et8)= cot B+ cota

180




GENERAL TRIGONOMETRY 131

sin 2 ¢ = 2 8in « cos «.
cos2a=cosda—sinta=2cos%a—1=1— 2gind

2tan
Qa=_ 22" |

tan 2 « 1—tanda

cot 2 cot’a-l_
2cota

sin } e = V3 (1 — cos ).

cos §} ¢ =V} (1+cosa).

tan—a_\/l—cos“ l—cosa.
1+ cosa sina

ot eV = e

8in @ cos 8=} [sin (¢ + B) + sin (« — B)].
cosesin 8=} [sin (e + B8) —sin (e — B)].
cosacos 8= 4 [cos («+ B) + cos (e —5)].
sin e sin 8= — } [cos (« + B) — cos (e — B8)].
sinecosa=}sin 2.

cos?a=}(1+cos2aq).

sina =} (1 — cos 2 a).

8in « 4 8in 8 = 2sin +Bcos 25-
8in @ —sin B8 = 2cos £ L +B 2—3
cosa+cos B = 2cosa;"8cosf‘;_ﬂ.
cosa-cosB=—2sin%esin¢;2ﬁ~-

RIGHT TRIANGLES
B34+ 0=cl
a+4 8= 90°

a
-=sin ¢ = cos 8.
¢
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FORMULAS
é=cosa=smB
¢
-z tan a = cot 8.
A=}ab=3}bcsine=} Asinacos a =} c2sin 2a.

OBLIQUE TRIANGLES
a4 B+ y=180°
¢=bcos « + a cos B, etc.

a b ¢
sina  sin ,8 8in vy

A =a% 4+ 53— 2ab cos v, ete.

B=y_b—c cot =, ete.

tan 2 bT té
a—
tané_a—a' ete.
=}(a+b+ o).

r=C=DCE=BC=0),

A=}besina=rs=Vs(s—a)(s—b)(a—c).

ANALYTIC TRIGONOMETRY
é
lim | — 1.
.131 sin 0]

. 0
h[:] [tan 0] =
(cos a + ¢sin «)(cos B+ isin B) = cos («+ B) + ¢ sin (e + B).

(cos a + ¢ 5in @)™ = cos ne + £ sin ne.

cos @ + ¢ 8in a = ¢,
€08 @ — ¢ 8in & = e~',
ele 4o

cos ¢ =
2



ANALYTIC TRIGONOMETRY. CONSTANTS
— e

27

cosh « 4 sinh ¢ = e*

cosh ¢ — sinh a = e~

sin a=

cosha:eL-'-_e‘:.‘u
2

— e".-

2

—hmr1+ ']1+ TR AR

% ula 90 L

umha-

e=1+_—-+= + + =271,

. B o
sioh a= 11+31+5v+7x+

CONSTANTS
i=v-1
= 8.14159265 ---.
B =180°.
12 = 57.2957795° -.- =57°17'44.8"...
e=2.7T182818285 -.-.

Mod, 10 = — L. = 4342944819 ....
log, 10

133



184 CONSTANTS

1 inch == 2.54001 .. centimeters.

1 foot = .83048 ... meters.

1 mile s= 1.60935 ... kilometers.

1 centimeter == .3937 ... inches.

1 meter = 8.28088 feet = 1.09861 yards.

1 kilometer = .62187 miles.

9= 382.086528 4 .171293 sin? ¢ feet per second per second.

= 9.779886 + .05221 sin3 ¢ meters per second per second at
sea level for latitude ¢.



ANSWERS TO EXERCISES

(Answers are omitted in case their knowledge would detract from the value of the

exercise.)
] Exerocise II
6 (0,0 (&0 (= a) ® a; (2vg0) (0.3v2) (-2 vz 0),

(0. -5 va}
7. (6, 0), (0, — B), (— 4.88, — 2.5), (— 3.54, 8.54).
9. 5.6569; 7.6158.
1. Cross country distances, in miles: 5.009; 2.828; 2.236; 2.236; 6.325.
12. Distances saved, in yards: 778.2; 644.4; 1288.7; 128.9.

Hxeroise IV
1681 1 a4 13 . \[I=siny
9, -, 3 . €08 & 15, jl—siny
1519 12. §. 1¢. 2cscB. 14siny
10. §. 16. 2(1-+tany).
Exeroise V
9. . 13, 60°. 17. (a) 60°; () 19.05 ft.
20. } V3. 14. 0° and 60°. 18. 8.08; 16.17. '
. § 15. 60° and 90°. 19. 452.39.
12. § (8VE-2). 16. 45° 20. 60°,
Bxeroise VI

11. 0° and 60°. 12. 80°. 13. 0°, 80° and 45° 14. 0°, 80° and 46°

Exercise VII
1. (a) 6.7,6.7; (b) 828, 4.75. 4 15.6; 9.
2. (a) 8; (b) 13.86. 5. (a) 2608.16; (b) 1500.
3. (a) 20, 34.64; () 28.28,28.28. 6. 24 miles per hour, 80° east of north.
Article 18
1. a =40.82, b= 11.76. 3. 3 =151.5, ¢ = 881.6,
2. a =20.25, ¢ = 88.75. 4. a=118.98, b =183.24.

186
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Hxercise VIII

B =64°50/, a =14.46, b= 80.77.

B =387°40, a =57.79, b =44.61.

« =28 45, a = 116.88, b =218.04.
a=11°2§, ¢ =123.11, b = 510.68.
B =68° 85, b="599.18, c = 643.66.
B=17° 15, b=223.56, ¢ =753.83.
a= 9 30, b="7170.98, c="7272.78.
a="T2° 30, a = 3825740, ¢ = 4988.36.
«=41°4¢, B =48°11', b =268.88.

. «=32°12, B ="57°4%, b= 605.08.

55° 47’, a = 354.25.
36° 652, a = 1120.

63° 8, ¢ = 1080.

45°14', ¢ = 845.07.

a=384° 1%,
«=53°8, B=
a=286°52, 8=
a = 44°46'

30°18', ¢ = 4184.34.
«=20°20, B =60°8Y, b=168.00, ¢ = 192.99.
a =126, B=7T1°58, a=>51.50, c = 27478,

B=
, B=
 a= 201V, B =60°40, ¢ = 440.94.
B=
B=

19. 8=16°40, a = 9347, b=26.2]1, ¢ =97.08.
20. « = 65°10/, a = 24.86, b= 568.71, ¢ = 59.19.
21. 200.1 ft. 23, 2°29'. 25. 1°9.
22. 1501.78 ft. 2¢. 4°46". 26. 33° 41’, 26° 84/, 45°.
29. .134 pitch, .2887 pitch, § pitch.
28. 19° 28’ inclination. 3. 26° 34'. 34, 21.78 ft. = 21 ft. 8% in,
29. 8 ¥ inclination. 32. 5759.71 ft. 35. 260.4 ft.
30. 0°9,0°17,1°26'. 33. 8228 36. 0°20.
37. 5° 54’ (=.1029 radians). Note that .1029 = gin 5° 52.5, an approxima-
tion. See Arts. 72 and 77 (3).
38. 2.468 miles. 39. 5022 ft.
40. 4 =(0, 0), B = (2409, 0), C = (3885.9, 274.8),

D= (987, 8148), E =(162.8,10430), F= (649.1,1248.8).

a B=110° b=

3441, 4 =828.81; 8=386° a=20227, A =24,049.58;

a=14°5¢, B=150°12', A4 =381,500; «=63° b=2326.88, A =058,8384;
a=284"17", a = 553.12, 4 =119,694.88; a=41°1"', B =907°58, A =153,432.72.

42. 51.76, 61.80,

o

43, S=2scos—-

4

68.40, 76.54, 1, 121.76, 141.42, 173.20.

44, :_2Rsm-l£0:=2rhn180°

180° 180°

45, C=27xR, P=2nRsin-—.—,c_2 Rcos—.--

C =62.83, P,=58.57, c,=44.43;
P,=081.23, c,="58.06;

P =6243, c,,=61.62;

Py =82.72, ¢, =02.58.
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46. A,= xR}, A,=nRssinlin‘93oos“,‘.—°°=%nR=sin3_g°-°,

A¢=1R’cos’l%°=%rR’(l + cos 8‘;0")

n
A.=3814.16, A, =200.00, A,=157.08;
A,,=262.84, A, =2068.15;
A,,=906.16, A,,=2802.21;
Agyg =812.16, A4, = 81114,
47. C=62.88, P,=6000, c,=5441;
Py =6211, ¢,=60.69;
Py, = 0264, c,, =6229;
Py =6278, c,=02.69.
48. A.=281416, A, ,=259.80, A,=285.62;
A,y = 800.00, 44,=298.11;
Ay, = 810.56, A4, = 308.80;
A, =81320, A, =3812.81.
49. X=-30, Y=-17.821, R=34.041, 30°south of west.
850, X=6r, Y=0, R=06r, due east.
51. Distance from center = r cos 6. 52. z=—15.
83. Component along plane= g sin &, component perpendicular to plane
=g cos &
54. 16, 27.71; 8.27, 80.91; 5.56, 81.51; 2.79, 31.88.
55. 50 pounds pressure, 141.42 pounds along ladder.
56. X=157.28, Y=80.78. 57. R=18.44, 6=48°2¢. 88, c=11.99.

Bxercise IX
1. 4,15, - 25, 4 1,816, }, &.
2 4,44 5. (a) 4724; (3) .01814.
3. 1,4, 16, 32, 64, &, &. . 6. (a) 28.16; (D) .01913; (c) 2.465.
7. 17.978. 9. 268.71. 11. z=179. 13. $4136.09. 15. 11.6 years.
8. 07637, 10. z=2.29. 12. $4656.20. 14. 529, 16. 8.8 years.
Hxeroise X
1. 4.86025, 2.79187, 9.84198, 5.80872 — 10, 21.47712.
2. 4.96088, 1.15821, 11.50651, 5.88510 — 10, 24.30108.
3. 516.35, 4.0866 x 1013, .016835.
4. 16361, 5.64325 x 101, .00013671.
5. 9,967,800,000. 7. 88.594 cm. 9. 18,231 x 101,
6. 7.0048 x 101 cm. 8. 71.68 cm. 10. 2,754,200.
11. 9.63459 — 10, 9.52928 — 10, 0.01824. 13. 78° 1.1/, 81° 43.6/, 76° 17.Y’.
12. 9.974556 — 10, 0.21672, 0.04197. 14. 25° 20.7', 27° 32.6', 35° 3.6'.
15. 13.861. 16 .91136. 17. 399.82 18. .38875.
19. 1.8365 inches. 22. .074765.
20. .1111 feet (= 1.3882 inches). 23. 6.711; 8.381.
21. 1.7 9 less than ths true value. 24. - 11.85; — 61.38.
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Bxeroise XII
B =27° a = 28026, b = 1172.1.

. @ = 60°37.6/, B = 20° 22.4', b = 4288.9.

B =14°44.8, b = 254.07, c = 998.12.

a = 15° 89.6', B = 74° 20.4, b = 168.86, c = 174.85.
a = 50° 13.1', B = 89° 46.9’, ¢ = 9.5878.

B8 ="71°845, a = 10417, b = 81271.

a = 83° 384, B = 6° 21.6/, b = 14.81, ¢ = 183.89.

« = 76° 88/, B = 14° 27, ¢ = 54.958.

a = 64° 48.%, B = 25° 11.5/, b = 81,087.

B =60°9.8, a = 5.854, ¢ = 11.766.

B = 64° 42.6', a = 19467, b = 40.264, ¢ = 44.581.

.« = 28° 23.6', B = 61° 86.4/, c = .00042.
. & = 26°47.8, a = 8.2159, b = 6.8696.
. &= 38°28.9', B = 51° 86.7', a = .056677.
. @ = B4° 43.6/, b = 44585, ¢ = .T7120.

a = 54° 43.2', a = 242.79, b = 848.16, c = 420.87.

. « = 55° 50.8, B = 84° 0.7, c = .0074192.

a = 9° 47.5/, a = .89928, ¢ = 6.6577.
« = 68°20.7', B = 26° 39.8', a = .014528. °
a = 64° 41.8', a = 1668.4, b = 789.12.

. 8.2588 feet. 31. 178.8 miles.
. 21 feet 3.1 inches. 32, 0° 382,
. 141.42 square feet. 33. .78523 feet.

1.8'. 34. 606.78 feet.

. 1237.8 feet. 38. 4256.64 feet.
. 16} miles, 86° 52.2' north of west. 36. 1424 feet.

. nR a7.
2177 4. 38. 554.08; 145.17.

80°  180°
cos —.
n n

1 gin 118.1 feet.

Article 47

. = 83°19.9, a = 434.04, c = 788.24.
. « = 656° 49.8',a = 122.18, b = 8385.60.
B =15°57.0/, b = 5.442, ¢ = 17.865.
B =1°20, a = 9.4526, b = .1826.

.opp

Article 48

a = 57° 59.9', y = 28° 86.6/, c = 20.526.
B = 18° 55.6, y = 85° 80.7', b = 185.96.

a = 104° 81.3/, B = 40° 2.9/, a = 5889.9;
{a = 4° 7.1, B’ = 130° 57.1/, o’ = 489.8.
{ll = 94° 17.9', y = 47° 13.8/, a = 207,810;

a' = 47° 4.6/, ' = 182° 46.7', a’ = 152,600.

L o
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Article 49

1. 8 =050°14.8/, y = 30° 82.6/, ¢ = 182.14.
2, a=23°818, y=19°7.2, b = 820.26.
3 «=2388°17.4, y = 63°18.2', b = .11496.
4 B =2382°16.1, y=11°0.8, a = .00808.
Artiole 50
1. «a=51°672/, 8 =66°49.4',y=61°18.4'; 4 =1.9017 x 100,
2 x=82°164, 8 =42°51.8, y = 54° 51.8'; 4 = 1.T797 x 10,
3, «=56°28.8, B = 84° 45.4',y = 88° 45.8".
& o =45°58.4/, 8 =72°33.2, y = 61° 83.4".
8. Impossible. Why? 7. Impossible. Why?
6. B =186°46.8". 8. y= 8 589"
Bxeroise XIV
1. B=T7409, y=48° 247, a = 76,567.
2. « =52°56.6/, 8 = 79° 47.8/, y = 47° 15.6.
3. y=86°10.3/, b = 9.0192, ¢ = 95.6890.
4. o =48°20.8, y = 80° 856.8/, b = .80470.
5. Imposgible. Why?
6. a=152°112,y=27°88.8, a = 49,921.
7. @ =84°82.1, B = 51° 418, y = 93° 46.1".
8. y=09°28.5/, ¢ = 68.698, ¢ = 78.877.
9. a=23°84.1, B = 85° 85.7, c = 6.0804.
10. « = 15°85.2', y = 126° 7.6/, c = 66.118.
11. 8=18°117, y=16°24.1, a = .14571.
12 {,3 = 82° 8.5/, y = 89° 45/, b = 84.998;
. ' = 31° 88.%, ¥ = 90° 1%, ¥/ = 86.210.
13. « = 84°10.5, a = 282.38, ¢ = 641.58.
1¢. o = 29° 57.8/, 8 = 104° 27.0, y = 46° 35.2",
15. «=21°13.9/, y = 82° 19.7, b = .0048578.

-~
<3

SEEEGEE

2¢.

26.
27.

a = 68° 48.7', y = 15° 88.5, a = 124.12.

.« = 388° 83.1/, B = 50° 42.0', y = 95° 44.9'".

a = 76°0.2', a = 8855.2, b = 6470.6.

. @ = 45° 20.5, 8 = 14° 15.5/, b = 2146.7.

. o= 49° 36.8', 8 = 40° 28.2/, ¢ = 952.67.

. «=151° 51.6/, § = 4° 80.4', y = 28° 88.0/, b = 416.44.
. @ =80°00', B =54°45.2', y = 45° 14.8', @ = 124.81.
. B = 90° 50, y = 16° 0/, a = 720.81, ¢ = 207.58.

& = 95°26.6', y = 27° 8.4/, @ = 125.81, b = 106.59.

. 2.1815 x 10?; 5.0117; 1,742,040,000.

6.5878 x 1018; .037875; 7270.3.
Case III.
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a=15°45, B=20°15, c=>521;
a=21°52.8/, B = 42° T4, ¢ = 728.6;
a=01°54T, B=58° 68, c=48.042;
a=47°50.5, §="T72°05, c=20148.
A =156°56.6/, B=145° 7.2, C=51°7.2';
{A =145° 13.6/, B =121° 114, C = 98° 85.0".
A= 68°259, B=141°34.1, c = 3284;
{ A =122° 254!, C=137° 84.8/, ¢ = §76.41.
{A = 75°, b=878.88, c = 621.14;
A =113° 68.6', B=106°2.2, C=13¢°59.2"
. 4.=161°2.7, B=18%° 2650, C="75° 814,
P=at P4 2 ab 008 ab 2 be cos 8¢ -+ 2 ac cos (ab+1) ; 4=12.98.
. be=82° 130, cd=175° 578, da=81° 50.T7", ab— cd = 100.06, b —da
= 11718,
36. c=1001.1, d = 568.6. 37. a=86°s=15.217.

3 V= 6u-nrceos66" 80 (6 — A)VIZR - M: V,=135.0, V,=3717,

V,=6068.3, V,=900.0, V= 1388.0, V= 1696.4, V,= 2054.8, V,=2402.8,
V, =2729.5, Vo = 8021.1, V), = 8257.8, V,,= 8892.8.
b =4834. 40. a = 8221.5. 41. b =1286.
Distance = 81.68, total height = 20.97.
. Distance = 24.24, height = 5.08.
. AD = 738.2, DB = 150.6.
8. AC = 1075.1, BC = 679.5.
AD = 1460.0, DC = 673.8, angle BXC at left = 17° 27’,
7. Distance = 135.86, height = 83.61.
D =§57° 4, CD = 196.78, BD = 283.55.
AD = 603.94, AC = 693.12, BC = 838.82, BE = 0605.76, AB = 867.48,
angle CXB at left = 4° 27.7',
50. AC = 828.24, AD = 836.42, BE = 805.4, BF = T13.8, AB = 185.34.
51. 39° 64'.

8,28,3 8 g B
Q
I
[
i
23
oo
o

2588

SENAS

Bxercise XV

45°, 60°, 150°, 112° 8¢’, 171° 53’ 14.4", 42° 58’ 18.6".
v x% xf 2xF 4xf Bx* St
6'12°¢’ 3’8’32
. 81.416 cm., 62.832 cm., 125.664 cm., 47.124 cm.
12 1% on =%
2
. Smaller sprocket: 4 revolutions per second, angular velocity = 8 » radi-
ans per second, linear velocity of circumference = 201.08 inches per second;

larger sprocket: § revolutions per second, angular velocity = 0—48—- radians per

I I

second, linear velocity of circumference = 201.06 inches per seoond. Speed of
machine = 20.444 feet per second = 14.38 miles per hour.
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Linear velocity of chain and of eircumferences of both sprockets = 75.48

inches per second ; angular velocity of larger sprocket = 15.09 radisns per sec-
ond, of smaller sprockes = 87.76 radians per second; smaller sprocket makes
5.1 revolutions per second.

LY
13. T 2%,
i <a<L 2 .
1e. 0<a<;£, §<“<34_" '<¢<5—4’-', %’-‘-’(a(zf-
Bxercise XVI
8
5 (% 1), e n (51), (3% -1), s
V2 V2
6 (1) % 8 (3 7) (%)
Hxercise XVII
14 7. 120°, 150°, 300°, 380°.
2 1+ 2\/§. 8. 15° 75° 185°, 195°, 255, 816°.
i 9. 60°, 800°.
3 10. 80°, 150°, 210°, 880°.
. —§. 11. 0°, 60°, 180°, 800°, 860°.
8. 60°, 300°. 12, 0°, 120°, 180°, 240°, 360°.
6. 120° 800°.
B=zercise XVIII
1. — oo0s 80° 9. 0,0. 22. 0.
2. — &in 10°. 10. 14+ v8 2V38 23. - 35.
3. eot 14°, T T g 2¢. —}.
4. — cot 35 11, V8-1 _2v8 25 +Vvi-d
5. — csc §0°. * 9 3 N 3
6. sec 40°. 12. 0,0. 26. ————-
g 1+ V8 _2V8 19, 1+ V8 27. sina.
| 2 "’ 8 4 28. —sina
g _1+Vv3 _2Vs 20. 0. 29. tana.
) 2 ' 8 2. 0. 30, - tana.
Hxercise XIX
S, @ + B = gin~! §§ = coa~! — §}, II quadrant.
6. @ + B = arcsin — ${} = arccos — {§$, ILI quadrant.
7. —sin(a + f8). 9. sin 2a. 11. sin 20.
8. cos (a + fB). 10. cos2 a. 12, cos 0.
13, 105° = mﬁ:—@ = m-\—/gi—\/—i;
V6 -V2 vB+V2

15° = 105° - 90° = aruin—T— = ADPeCOs Y
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1¢. 76°= ncain‘/a:"&=amo- ‘/6;‘/5;
15°=9o=-75°=msin_"_§.4—_‘/§=m"‘-":"§.
Bxercise XX

11. tan 15° = 2 — V3, oot 15° = 2 + V3.
15. sin (& + 8 + y) = sin @ cos S cosy + cos « sin 8 cos y + cos & cos Ssiny
— #in « 8in 8 sin y.
16. cos (@ + B + y) = cos & co8 8 cos y — sin & sin B cos y — sin @ cos Bsiny
— cos & 8in 3 sin y.
tan n S tan
17. tan(e + B +7) =y taa.:ﬁt::nﬁy+t:1?ytsnta:“:nﬁhnz
cot 8 cot y + cot y cot e + cot a cot y
cot a cot 8 cot y — cot & — cot B — coty
Note the symmetry in the last four formulas.

18. cot(¢+ﬁ+y)=

Bxeroise XXX

8. 2 & = sin~! J&% = cos-! 1§11}
6. 2 @ = arcsin + }§§ = arccos — }}§. Explain the signs.
7. sinja=4+4and £ 4,cos§= ;hiand:i;g.
1 V2 4 4 11V2 17v3 | 7\/2
9.

2 am(a+2ﬂ) =4t and — §3§,cos (¢ +28) = — Ay and —}“

10. sin (¢ ~ 28) =+ §§4 and F {§§, co8 (¢ — 2 8) = F A% and F §§4.

17. « = 80°, 45°, 60°, 210°, 225°, 240°. 18. = 0°, 180°, and } arccos 4.

19. «=67°80', 157° 30", 247° 80, 837°3(, and jarctan §.

20. ¢=90°, 270° and §cos-1§ 23. 2z, 24.1. 25.0. 26. L

Bxercise XXII

1. §[sin8a + sin2a]. 8 3[3-40082c+cosdal.
2. § [sin 10 & — sin 2 &]. 9. 4[8sin2¢ —sin6a).

3. }[oos 4 & — cos 10 ] 10. Y [1—cosda].

;: :[[::i‘f_‘:o?;i]“] 15 k.55 [(£=0,1,2,3,4).

6. }[2sin2« +sinda]. %,

7. $[8+4cos2a+4 cosdal 16. (2k+l)4' (k=0.1,2,9).
17. (2k+1)%; [k=0,1,2,..11] and (8 k+ 1)%; [£=0,1,2 3]
18. (2k+1)3!6; (k=0,1,2,--29] and (2k+ 1)1; [k=0,1,2, 9]
19. 'k.’i; (k=0,1,2, ...7]. 20. k. , (k=0,1,2,...7].
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Hxeroise XXIII

9. @k+1I; [k-0,1,2 ). 13, otte—8cota

@ +1)6’ [k-0,1,2,..] e~ ook
bx ko 3 tan @ — tan* &

10. - 11, T, 14, QAN -—tan &
8 4 1-8tana

1a. d@E+1)%. 18. 4 sin « cos® @ —4 sin® & 008 ct.
=and 2k + )8 16, Booct o o B oost e B,

17. 0° 15° 105° 180°, 256° 845°. (See Exercise XIX, examples 18 and 14.)
18. «=60° 90°, 120°, 27¢°, and aresin — ——. 19, ¥¥. g9 k=
2v3s 2

2

Artiole 72
—8ind. 2 secOtanf. 3. —cschcoth. 4 sec*d. 5. —csc?f.

Artiole 73
. v— . 1+vV-3
0002—:—!+ssm27b”; +1; 1, “:Ts; +1, +¢; +1, %

6. cog&k_j-_]'):.‘,isinw; +¢; _l’}_:l:__—__s;
n n 2
1+i . +V84i
+ 2d:t; +i, + 2:&:1_
Article 74
6. Products: 16 +64i; — 5+ 84¢; 6 4+ 124; —8 —204; 12 - 184; 4 + 224;
4 + 221,
7. Quotients: 5 —8¢; 8 — 21¢. 8. Results: 4 + 124; 1; —8; 1.
9. Roots: 4 —~34; 3+24; —46+947; +24. ’
- 2kx .. 2kn
10. Va [cos ST+ isin =T |5 [k=0,1,2, - (n = 1)].
AL +1; +4; ,:I—*ﬂ; 2, -1xV-8.

2






INDEX

[Referencss are to articles, except where otherwise indioated.}

Addition formulas, 83, 64.
Ambigunous case of oblique triangles, 48.
Angle, general definition of, 52.
Angles, positive and negative, 3.
Answers to exercises, page 136,
Area, laws for

oblique triangles, 45.

right triangles, 17.

Checks, 20.

Common logarithms of numbers, Table {,
page 3.

Complementary angles, fuanctions of, 10.

Complex numbers, graphical methods of
representation and combination, 74.

Composition of forces, 51.

Conversion formulas for products, 69.

Conversion formulas for sams and differ-
ences, 70.

Codrdinates, 4.

Definitions of the trigonometric functions,
33, 54.

De Moivre’s theorem, 73.

Directed rectilinear segments, 2.

Drawing instruments, 1.

Equilibrium of forces, 51.

Errors, 20.

Exponential values of the trigonometric
functions, 75.

Formulas for tan (« + g), cot (a £ 8), 66.
Formulas, list of, page 130.
Fanctions of 0°, 90°, 12.

of 180°, 36.

of 270°, 360°, 58.

of 30°, 45°, 60°, 11.

of (90° + ), 38.

t 4

of (kI£a), 62

of half an angle, 68.

of twice an angle, 67.

Fundamental relations between the func-
tions of a single angle, 9, 34, 59.

General inverse functions, 80,
Graphs of the trigonometric functions,
57

Greek ll.phabot, page x.

Half an angle, functions of, 68.
Hyperbolic functions, 76.

Infinity, definition of, 13, 85, 58.
Inverse functions, logarithmic values of,
8L

Inverse trigonometric functions, 14.

Law for angles in terms of sides, 44.
Law of cosines, 42.
Law of projections, 40.
Laws of sines, 41.
Law of tangents, 43.
Laws of area,
oblique triangles, 45,
right triangles, 17.
Laws for solution of
oblique triangles, 39-44.
right triangles, 16.
Limitations in value of the trigonometric
fanctions, 8, 33, 55.
Limits of 6/sin ¢ and ¢/tan 9, 72.
Line representations of the trigonometric
functions, 60.
List of formulas, page 130.
Logarithms,
characteristic, 24.
cologarithms, 28.
common system, 23.
definition of, 21.
interpolation, 26.
laws of combination, 23.
mantissa, 25.
aumbers from logarithms, 27.
of numbers, Table I, page 3.
of trigonometric functions, Table II,
page 25,

Method of solution of triangles, 18.
Multiple angles, 71.

146
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Natural trigonometric fumctions, Table
10, page T1.

Oblique triangles,

area, 45.

laws for solution, 39-44.
Oblique triangles, solation of, 46-80.
Orthogonal projection, 4 (note), 15.

Periodicity of the trigonometric functions,
61.

Proportional parts, theory of, 79.
Purpose of trigonometry, 5.

Relation between the ratics and the
angle, 7.
Resolution of forces, 51.
Right triangles,
area of, 17.
laws for solation, 16.
solution by logarithms, 31.
solution by nataral functions, 18.

Series, exponential, logarithmic, trigono-
metric, hyperbolie, 77.

Signs of the trigonometric functions, 8, 38,
88

Slide rule, 30,
Solation of oblique triangles, 46-50.

INDEX

Solution of right triangles,

by logarithmic functions, 31.

by natural functions, 18.
Squares of numbers, Table IV, page 91.
Sabtraction formulas, 65.
Bupplementary angles, functions of, 37.

Table L. Common Logarithms of Num-
bers, page 3.
Table IL. Logarithms of the Trigonometrie
Functions, page 28.
Table III. Natural Trigonometric Fune-
tions, page 71.
Tuable IV. S8quares of Numbers, page 91.
Trigonometric functions, definitions of,
for acute angles, 6.
for obtuse angles, 32.
for the general angle, 54.
logarithms of, Table 1I, paye 25.
natural, Table I, page 71.
Trigonometric tables, pages 1-93.
ocomputation of, 78.
description of, 19,
Trigonometry, purpose of, 5.
Twioce an angle, functions of, 67.

Variations of the trigonometric functions,
18, 85, 86.



