
CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Project work:

LPT for erosion modeling in OpenFOAM
Differences between solidParticle and kinematicParcel, and how to add

erosion modeling

Developed for OpenFOAM-2.2.x

Author:
Alejandro López

Peer reviewed by:
Abolfazl Asnagi

Håkan Nilsson

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone

through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

February 4, 2014

Chapter 1

Theoretical Background

1.1 Introduction

The aim of this tutorial is to effectively describe the available possibilities in OpenFOAM to simulate
lagrangian inert particles and the different classes used for their modelling. The tutorial also tries
to give a description of how to create an incompressible multiphase solver and how to pre-process,
run and post-process a case involving an incompressible flow with inert Lagrangian particles in a
three-dimensional domain.

1.2 Lagrangian Particle Tracking

When dealing with the movement of a group of particles inside a fluid, there are basically two
different ways to approach the problem. In the Eulerian-Eulerian models, the particles are treated
as a continuous phase and conservation equations are solved for the particulate phase. This method
is suitable for large particle concentrations, where two-way coupling between the fluid and the
particulate phases as well as particle-particle collisions are important. On the other hand, in the
Eulerian-Lagrangian approach, the Eulerian continuum equations are solved for the fluid phase,
while Newton’s equations for motion are solved for the particulate phase in order to determine the
trajectories of the particles (or groups of particles). The trajectories are obtained once the following
equation for the particles has been solved:

mp
dup

dt
= Fp (1.1)

Once the force has been calculated, the trajectories are calculated by means of integration of the
particle velocity:

dxp
dt

= up (1.2)

There are three different possibilities when constructing the equations to solve particle motion:

• One way coupling: particle influence on the fluid phase is neglected

• Two way coupling: the force the particles exert on the fluid is no longer neglected

• Four way coupling: also particle-particle collisions are taken into acount

For a more accurate selection of the correct approach, the particle mass loading, β, and the Stokes
number, St might also be calculated [1].
The particle mass loading is expressed as follows:

1

1.3. EROSION 2

β =
particulate mass per unit volume of flow

fluid mass per unit volume of flow
=
rpρp
rρ

(1.3)

Where r is a volume fraction and ρ is a density. Significant two-way coupling is expected for particle
mass loadings greater than 0.2 and values greater than 0.6 indicate that particle collisions are likely
in, at least, some parts of the domain.

The Stokes number defines the degree to which particle motion is tied to fluid motion:

St =
ρpd

2
pVs

18µLs
(1.4)

Where dp is the particle diameter, µ is the dynamic viscosity of the fluid and Vs and Ls are the
characteristic velocity and length scales of the flow. For values of St > 2.0 the flow will be dominated
by particle-wall interactions, whereas for St < 0.25 the effect of particle-wall interactions is negligible
and the particles are tightly coupled to the fluid through viscous drag. At St < 0.05 the particles
and the fluid are strongly coupled, while for St << 0.01 the particles are expected to respond almost
instantaneously to any changes in the fluid flow.

The force balance on a spherical particle inside a viscous fluid is written:

Fp = mp
dVp

dt
= FD + FP + Fg + FA (1.5)

The drag force on spherical particles is then calculated as:

FD = mp
18µ

ρpd2p

CDRe(Re)

24
(u− up) (1.6)

Where the drag coefficient CD is obtained from the following equation:

CD =

24
Re if Rep < 1
24
Rep

(1 + 0.15Re0.687p) if 1 ≤ Rep ≤ 1000

0.44 if Rep > 1000

The gravity and buoyancy force is:

Fg = mpg(1 +
ρ

ρp
) (1.7)

The pressure gradient force is:

FP =
1

6
πd3p∇P (1.8)

And the added mass force:

FA =
1

12
πd3pρp

dVp

dt
(1.9)

1.3 Erosion

Throughout the years many authors have published a very large amount of papers and literature
on erosion, having most of them developed their own equations for predicting erosive wear taking
into account different approaches and factors that may influence erosion. One of the most important
authors in erosion literature and responsible for one of the most commonly used equations for erosion
prediction is Iain Finnie [4]. The equation developed by Finnie yields the volume of material, Q
removed by a single abrasive grain of mass, m, and velocity, V .

Q =
mV 2

pψK

(
sin2α− 6

K
sin2α) if tan α ≤ K

6
(1.10)

2

1.3. EROSION 3

Q =
mV 2

pψK

(Kcos2α
6

) if tan α >
K

6
(1.11)

Where p is the plastic flow stress of the material being eroded, ψ is the ratio of the depth of contact
to the depth of cut and K is the ratio of vertical to horizontal force components acting on the
particle.

Figure 1.1: Predicted variation of volume removal with angle of impingement for a single abrasive
grain. Experimental points for erosion by many grains (4 copper, � SAE I020 steel, ◦ aluminium)
are plotted so that the maximum erosion is the same in all cases.

Although this equation predicts no erosion for angles of impingement close to 90 degrees (figure
1.1), it serves its purpose as a first approach, and, implementing an additional term which takes into
account particle rotation at impingement, erosion at normal angles can also be predicted [5].

3

Chapter 2

Implementation of LPT in
OpenFOAM

2.1 Introduction

OpenFOAM provides the user with a number of possibilities in order to represent lagrangian par-
ticles, two of which are going to be commented here: The /lagrangian/intermediate library and
the /lagrangian/solidParticle library. Some of the available examples and references are [13],
[12] and [11], as well as the material at the course homepage [9].

2.2 SolidParticle Class

The solidParticle class enables the user to implement solid particles and to couple those to a
given solver. Some examples on coupled solvers can be found in the references mentioned above.
This library can be found by typing the following in the terminal window:

cd $WM_PROJECT_DIR/src/lagrangian/solidParticle

This folder contains the files solidParticle.C and solidParticleCloud.C, which define how the
particles are implemented and their behaviour. The solidParticle.C starts with a definition
of the solidParticleCloud class, which is, in fact, a templated Cloud of solid particles. The
Foam::solidParticle::move function includes the implementation of the Reynolds number, needed
for the calculation of the drag force and the new velocity. This new velocity will be affected by the
parameters yielded by the operations performed on the eulerian phase. The carrier phase properties
are represented inside the code by rhoc for the density,Uc for the velocity and nuc for the viscosity.
Also some additional functions are implemented that determine what happens when a patch is hit
by a particle and these are different depending on whether it is a processor patch or a wall patch for
example. Regarding the file solidParticleCloud.C, the constructor for the cloud of solid particles
is defined first. This constructor reads the properties from a dictionary called particleProperties

and initially only the density of the particles (rhop) the restitution ratio (e) and the friction co-
efficient (mu) are required. In the examples and tutorials cited above, various modifications are
implemented to this class such as the addition of an injector and modification of particle shape
among others, for which additional properties need to be defined. Also a more specific definition of
the class and the functions of its different members can be found in those references.

2.3 The intermediate library

The lagrangian/intermediate library in OpenFOAM consists of a series of models, forces and
CloudFunctionObjects templated for each of the classes derived from the parcel class. The classes

4

2.3. THE INTERMEDIATE LIBRARY 5

available are the following ones:

• CollidingParcel

• ReactingParcel

• ReactingMultiphaseParcel

• ThermoParcel

• KinematicParcel

This report is mainly focused on the description of the KinematicParcel class and it will also try
to briefly introduce the additional features of the CollidingParcel class.
Before making any changes in the code, it is highly recommended to recompile the files needed in the
$WM_PROJECT_USER_DIR/src/lagrangian directory. In order to do this, we can run the following
commands in the terminal window:

cd $WM_PROJECT_USER_DIR

mkdir -p src/lagrangian

cp -r $FOAM_SRC/lagrangian/intermediate $WM_PROJECT_USER_DIR/src/lagrangian

Once this is done, the necessary files will be copied into the user source directory and the next step
would be to recompile them. It is highly reccommended to recompile only the necessary files into
the user directory both to save disk space and to make the compilation faster. In this case, only the
necessary files to compile both kinematic libraries (kinematicCloud and kinematicClollidingCLoud)
are recompiled. This way, the user is able to run one, two or four-way coupled simulations of inert
particles.

2.3.1 KinematicParcel Class

While in the solidParticle class the particles are tracked individually, in the KinematicParcel

class, a set of particles or computational parcel is tracked. This construction is made because
it is usually too expensive in computational terms to simulate all the real particles. In order to
capture the behaviour of the real particles, some real case properties are defined. Thus, the main
difference between the solidParticle class and the kinematicParcel class is that the solidparticle
class contains no parcel treatment, but only real particles. However, both classes share some of
their member functions and both are derived from the particle class and their clouds are both
templates of the Cloud class. Nevertheless, the kinematicParcel class complexity lies far beyond
the solidParticle class one.

2.3.2 KinematicCloudProperties dictionary

In order to set up the properties of the parcel as well as the additional submodels a dictionary called
kinematicCloudProperties is needed. An example of such a file can be found on Appendix 1.
Additional examples can also be found by typing in the terminal window the following commands:

run

find tutorials/ -name kinematicCloudProperties

By running this command, the search is made inside the tutorials folder within the run directory.
If one wishes to find examples inside the $FOAM_TUTORIALS directory, the commands to run in the
terminal window would be the following ones:

find $FOAM_TUTORIALS -name kinematicCloudProperties

and once the appropriate tutorial has been found, it can be copied to the run directory by typing:

5

2.3. THE INTERMEDIATE LIBRARY 6

cp -r desiredTutorial/ $FOAM_RUN

The properties of our Lagrangian particles are going to be defined within this dictionary, such as
the injection model, the forces on the particles and the cloudFunctionObjects, which will enable the
user to output erosion rates. The first dictionary entry (solution) consists of a series of switches,
sourceTerms, interpolationSchemes, and integrationSchemes The coupled option can be set
to true or false and the user may choose between transient or steady-state solution by switching the
boolean transient to yes or no respectively.

template<class CloudType>

template<class TrackData>

void Foam::KinematicCloud<CloudType>::evolveCloud(TrackData& td)

{

if (solution_.coupled())

{

td.cloud().resetSourceTerms();

}

if (solution_.transient())

{

label preInjectionSize = this->size();

this->surfaceFilm().inject(td);

// Update the cellOccupancy if the size of the cloud has changed

// during the injection.

if (preInjectionSize != this->size())

{

updateCellOccupancy();

preInjectionSize = this->size();

}

injectors_.inject(td);

// Assume that motion will update the cellOccupancy as necessary

// before it is required.

td.cloud().motion(td);

}

else

{

// this->surfaceFilm().injectSteadyState(td);

injectors_.injectSteadyState(td, solution_.trackTime());

td.part() = TrackData::tpLinearTrack;

CloudType::move(td, solution_.trackTime());

}

}

As it can be seen in the code above, depending on whether we choose the solution to be coupled,
uncoupled, transient or steady-state, the evolveCloud function will perform different operations.
For instance, in case the solution is transient, the function

Foam::InjectionModel<CloudType>::inject(TrackData& td)

6

2.3. THE INTERMEDIATE LIBRARY 7

will inject the parcels. However, if it is a steady-state solution, the injection will be performed by
the function

Foam::InjectionModel<CloudType>::injectSteadyState

In the file InjectionModel.C, which can be found in

$WM_PROJECT_USER_DIR/src/lagrangian/intermediate/submodels/Kinematic/InjectionModel/InjectionModel

both functions are implemented and, as an example, one of the main differences between them
has to do with the mass that the injector is going to introduce inside our computational domain.
In a steady state case, the total mass to be injected is equal to the mass flow rate that the user
specifies inside the kinematicCloudProperties dictionary, while in a transient case, the time-step,
the duration of the injection, the mass flow rate and other properties defined are taken into account
to calculate the number of parcels the injector is going to introduce in the system per time-step in
order to fulfill the user’s requirements.
In the particular case of a coupled simulation, the sourceTerms dictionary entry allows the user to
specify what kind of scheme to use, which can be set to explicit or semiImplicit, as well as the
relaxation factors, which have to be preceded by the name of the field they are going to be applied
on (default value is 1). All this data introduced by the user will be processed by cloudSolution.C,
located inside the following directory:

$WM_PROJECT_USER_DIR/src/lagrangian/intermediate/clouds/Templates/KinematicCloud

/cloudSolution

It is also inside this file where it can be found what the switch active does. In fact, if it is set to
true, cloudSolution will call the function read() in order to set up how is the solution going to be
obtained according to the rest of parameters specified in the dictionary.
The cellValueSourceCorrection switch, when set to on, activates the correction of the momentum
transferred from the lagrangian phase to the carrier phase in case the simulation is coupled. This is
done by manipulating the updated momentum for the lagrangian phase and dividing its cell value
by the mass of the cell. The function is implemented in the following file:

$WM_PROJECT_USER_DIR/src/lagrangian/intermediate/parcels/Templates

/KinematicParcel/KinematicParcel.C

The interpolationSchemes entry is used for the definition of how the fields relative to the la-
grangian phase have to be interpolated. The last entry inside solution states which schemes going
to be used when integrating the lagrangian fields. Options for the schemes are Euler or analytical.
In what concerns the constantProperties dictionary entry, at least rho0, youngsModulus and
poissonsRatio have to be specified.
Other parameters such as parcelTypeId, rhoMin and minParticleMass will be set to their default
values in case they are not found (1e-15 is the default value for both density and mass). While
the meaning of the last two parameters is fairly clear, the first one might not be so obvious. The
parcelTypeId is just a form of identification of the particles belonging to this particular cloud. This
might be useful if two or more different clouds with different properties are being post-processed. In
this case, setting different parcelTypeId numbers, the different clouds will be flagged with different
numbers (default is 1).

2.3.3 Submodels

The submodels directory contains the different templated models that can be added to the la-
grangian particle cloud classes. The structure of the submodels directory in what concerns the
KinematicCloud class is as follows:

7

2.3. THE INTERMEDIATE LIBRARY 8

submodels/

---- CloudFunctionObjects

---- CloudFunctionObject

---- CloudFunctionObjectList

---- FacePostProcessing

---- ParticleCollector

---- ParticleErosion

---- ParticleTracks

---- ParticleTrap

---- PatchPostProcessing

---- VoidFraction

---- ForceTypes

---- ParticleForceList

---- Kinematic

---- CollisionModel

---- DispersionModel

---- InjectionModel

---- ParticleForces

---- PatchInteractionModel

---- SurfaceFilmModel

---- SubModelBase.C

---- SubModelBase.H

This structure is what should be seen if one wants to recompile the intermediate library only taking
the kinematicCloud class into account. This is useful in case this class is the only one being used
since the compilation will be much faster.

Injection Model

The different injection models available are the following ones:

• cellZoneInjection

• coneInjection

• coneNozzleInjection

• fieldActivatedInjection

• inflationInjection

• injectionModel

• kinematicLookupTableInjection

• manualInjection

• noInjection

• patchInjection

• patchFlowRateInjection

A quick description of the injection along with the entries needed in the dictionary can be found
at each .H file inside the correspondent injection model folder, which can be reached by typing the
following line in the terminal

cd $WM_PROJECT_USER_DIR/src/lagrangian/intermediate/submodels/Kinematic/InjectionModel

8

2.3. THE INTERMEDIATE LIBRARY 9

Particle Forces

OpenFOAM allows the user to choose the forces to be included in the model. The forces inside the
ParticleForces directory are:

• Drag Two possible drag models are available: SphereDrag and NonSphereDrag. The first one
is a drag model assuming spherical particles while the latter is used for non-spherical particles
and it is based on a coefficient obtained by dividing the area of a sphere with the same volume
by the particle area. The Drag force for both cases is basically calculated as in equation 1.6.

• Lift Both Saffman-Mei for spherical particles and Tomiyama for deformable bubbles lift mod-
els are implemented. The lift coefficient is calculated with the chosen model and then the force
is calculated inside LiftForce.C, after which it is stored in forceSuSp This class is a helper
container for both explicit and implicit terms where Su is the explicit contribution (directly
calculated as a force), and Sp is the implicit contribution (calculated as force

velocity) so that the

total contribution is calculated as F = Sp(u− up) + Su.

• Gravity The Gravity force is calculated with equation 1.7 and in the standard KinematicParcel

class, a file named g with both units and value of the gravitational acceleration is needed inside
the constant directory. The constructor of the cloud will ask for this file, which will be used
for the calculation of the gravity force.

• Paramagnetic This model calculates the particle paramagnetic (magnetic field) force. Both
the field and the magnetic susceptibility of the material are needed for the calculations.

• PressureGradient Function that calculates the pressure grandient force on the particles. An
additional interpolation scheme has to be included for the DUcDt field, used for the calculations.

• VirtualMass Calculates the virtual mass force in coupled simulations in conjunction with the
pressure gradient force. A dictionary with the virtual mass coefficient (Cvm) must be specified,
along with the interpolation scheme for DUcDt. A typical value for the virtual mass coefficient
is 0.5.

• NonInertialFrame Used to calculate the non inertial frame of reference force. The solver will
look up inside the kinematicCloudProperties dictionary for the linear acceleration, angular
velocity and angiular acceleration. If the user does not specify a name, default values will
be chosen. If no value for accelerations and velocity is specified, zero values will be used as
default, so the reference frame will remain static.

• SRF Allows calculation of the SRF reference frame force. The class contains a pointer to the
SRF model being used so that the values needed will be extracted from the SRF properties

Distribution Models

In what concerns the injection of the lagrangian parcels, OpenFOAM contains a library of runtime-
selectable distribution models.A distribution model is a function that, for a particular property
defines quantitatively how the values of that property are distributed among the particles in the
entire population. The current distribution models include:

• exponential

• fixedValue

• general

• multiNormal

• normal

• RosinRammler

9

2.3. THE INTERMEDIATE LIBRARY 10

• uniform

The equation used by each one of these distributioin models is specified inside the .H file inside
OpenFOAM’s distributionModels directory, which can be reached by running in the terminal
window:

cd $FOAM_SRC/lagrangian/distributionModels

As an example, the Normal and the Rosin-Rammler distristributions are plotted below:

Figure 2.1: Normal Distribution for Particle diameters between 150µm
and 350µm

10

2.3. THE INTERMEDIATE LIBRARY 11

Figure 2.2: Rosin-Rammlerl Distribution for Particle diameters be-
tween 150µm and 350µm

11

2.4. EROSION MODELLING 12

CloudFunctionObjects

One of many useful classes OpenFOAM provides the users with is the CloudFunctionObjects.
These are library functions that provide additional capabilities to the cloud-based solvers. The
available ones in OpenFOAM 2.2.x are the following ones:

• facePostProcesing It records particle face quantities on user-specified face zone. It supports
accumulated mass and average mass flux calculations.

• particleCollector Function that collects the parcel-mass and mass flow rate over a set of
polygons, defined as a list of points.

• particleTracks It records all particle variables one each call to postFace.

• particleTrap Traps the particles within a given phase fraction for multiphase cases.

• patchPostProcessing Standard post-processing. It outputs the desired information at the
user-specified patches.

• voidFraction Creates the particle void fraction on the carrier phase.

• particleErosion This function creates the particle erosion field on the user-specified patches.
It outputs a volScalarField which, at each face, it will be the sum of the volume eroded by
all the particle hits.

A set up example of the particleErosion CloudFunctionObject can be found in the kinematicCloudProperties
dictionary in Appendix 1. For the rest of the functions, the set up is basically the same. Only some
of the variables have to be changed because each function requires different input information. How-
ever, the information needed can be found inside the code, by entering the respective .H file inside
each CloudFunctionObject folder. This folders can be reached by typing in the terminal:

cd $WM_PROJECT_USER_DIR/src/

And then,

cd lagrangian/intermediate/submodels/CloudFunctionObjects

In case the intermediate folder has been recompiled in the user directory.

2.4 Erosion modelling

Impingement information, such as impact speed and impact angle, is gathered as particles hit the
wall of the geometry.

2.5 Implementation of Erosion Modelling in OpenFOAM

Taking a look inside the ParticleErosion.C file, the constructor is implemented and it requires,
in this case, the names of the patches where it is going to be applied and the plastic flow stress of
the material being eroded. Both ratios, depth of contact to length of cut and normal and tangential
forces, are also read but in this case, if they are not found, the default ones are used (2 is the default
vaue for both of them).

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

template<class CloudType>

void Foam::ParticleErosion<CloudType>::preEvolve()

{

12

2.5. IMPLEMENTATION OF EROSION MODELLING IN OPENFOAM 13

if (QPtr_.valid())

{

QPtr_->internalField() = 0.0;

}

else

{

const fvMesh& mesh = this->owner().mesh();

QPtr_.reset

(

new volScalarField

(

IOobject

(

this->owner().name() + "Q",

mesh.time().timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::NO_WRITE

),

mesh,

dimensionedScalar("zero", dimVolume, 0.0)

)

);

}

}

The preEvolve member function, as seen above, initializes the field. It can be seen that the name
the field will be given is going to be the name of the cloud that is being tracked with a Q at the end.
In case the kinematicCloud is being used, the erosion field will have the name of kinematicCloudQ.
The member function in charge of gathering all the necessary information, manipulate it and store it
inside the erosion field is called postPatch. Here is where the user can set up his own erosion model
(different from the one that is already implemented) just by taking the necessary particle variables
and changing the function into the desired one.

template<class CloudType>

void Foam::ParticleErosion<CloudType>::postPatch

(

const parcelType& p,

const polyPatch& pp,

const scalar trackFraction,

const tetIndices& tetIs,

bool&

)

{

const label patchI = pp.index();

const label localPatchI = applyToPatch(patchI);

if (localPatchI != -1)

{

vector nw;

vector Up;

13

2.5. IMPLEMENTATION OF EROSION MODELLING IN OPENFOAM 14

// patch-normal direction

this->owner().patchData(p, pp, trackFraction, tetIs, nw, Up);

// particle velocity reletive to patch

const vector& U = p.U() - Up;

// quick reject if particle travelling away from the patch

if ((nw & U) < 0)

{

return;

}

//Calculate magnitude of the particle velocity at impingement

const scalar magU = mag(U);

//Udir is the velocity unitary vector, i.e, the direction of the particle at impingement.

const vector Udir = U/magU;

// determine impact angle, alpha

const scalar alpha = mathematical::pi/2.0 - acos(nw & Udir);

const scalar coeff = p.nParticle()*p.mass()*sqr(magU)/(p_*psi_*K_);

const label patchFaceI = pp.whichFace(p.face());

scalar& Q = QPtr_->boundaryField()[patchI][patchFaceI];

if (tan(alpha) < K_/6.0)

{

Q += coeff*(sin(2.0*alpha) - 6.0/K_*sqr(sin(alpha)));

}

else

{

Q += coeff*(K_*sqr(cos(alpha))/6.0);

}

}

}

// *** //

If the user-specified patch is hit, the magnitude of the velocity of the impinging particle at that
moment is calculated with the expression mag(u) and stored inside magU. In order to calculate the
angle of impingement, the direction of the particle velocity is determined first ad stored in the Udir

vector. The angle of impingement is the one between Udir and the patch normal direction, and
it is stored inside alpha. the scalar coeff is the number of particles inside the parcel times the
mass of those particles (i.e., the total mass) multiplied by the velocity and the constant coefficients:
plastic flow stress and the two ratios. The field this CloudFunctionObject writes to the case
directory is going to be zero everywhere but in the specified patches, where is is going to print a
nonuniform List<scalar>, which will be the erosion rate at each face of the boundary patches
specified. The equation used for the calculation of the erosion field is exactly equations 1.10 and
1.11.

14

2.6. TEMPLATING IN OPENFOAM 15

2.6 Templating in OpenFOAM

Due to the fact that templates are very common within the KinematicParcel class, an introduction
to templating could be of some use in order to be able to understand and customize Lagrangian
simulations in OpenFOAM.
C++ requires the declaration of variables, functions, and most other kinds of entities using specific
types. However, a lot of code looks the same for different types. Templates are functions or classes
that are written for one or more types not yet specified. When using a template, the types are
passed as arguments, explicitly or implicitly.

2.6.1 Function Templates [3] [6] [8]

A function template is used to represent a family of functions. The difference with ordinary functions
is that, in the template, some of the parameters are left undetermined, i.e., parametrized. For
example, in case one wants to create a function that returns the greater one of two objects:

template <typename T>

inline T const& max (T const& a, T const& b)

{

return a<b?b:a;

}

The keyword typename introduces a type parameter. This is the most common one but it is not the
only possible kind of parameter. The template parameters have to be announced with a syntax like:

template<parameters separated by commas>

In the example, the type parameter is T. This type parameter can have any identifier. It represents
an arbitrary type that is going to be specified when the function is called. The condition to use a
particular type is that it supports the operation that is being done in the function. For instance,
in the example, the type specified has to support the operator <. The word typename may also
be substituted by the word class. This keyword was actually the only way to introduce type
parameters until the use of the keyword typename was enabled and it still remains valid. Normally,
templates aren’t compiled into single entities that can handle any type. Instead, different entities
are generated from the template for every type for which the template is used. The process of
replacing the template parameters by concrete types is called instantiation. In the example above
the template can be instantiated:

inline int const& max (int const& a, int const& b)

{

// if a < b then use b else use a

return a<b?b:a;

}

for integers,

const double& max (double const&, double const&);

for double,

const std::string& max (std::string const&, std::string const&);

for strings and so on.
OpenFOAM contains a very large amount of templates. As an example, the following functions are
used inside the KinematicParcel class to interpolate the density and the velocity. However,they
have different types, being the density a scalar and the velocity a vector. That is why the generic
type of Foam::interpolation is redefined for each one of the functions: scalar for the density and
vector for the velocity.

15

2.6. TEMPLATING IN OPENFOAM 16

template<class ParcelType>

template<class CloudType>

inline const Foam::interpolation<Foam::scalar>&

Foam::KinematicParcel<ParcelType>::TrackingData<CloudType>::rhoInterp() const

{

return rhoInterp_();

}

template<class ParcelType>

template<class CloudType>

inline const Foam::interpolation<Foam::vector>&

Foam::KinematicParcel<ParcelType>::TrackingData<CloudType>::UInterp() const

{

return UInterp_();

}

An attempt to instantiate a template for a type that doesn’t support all the operations used within
it will result in a compile-time error. Thus, templates are compiled twice: without instantiation,
the template code is checked for correct syntax and when instantiated, it is checked that the calls
are valid. When function templates are called for some arguments, the template parameters are
determined by the arguments passed. If integers are passed as arguments, the compiler must conclude
that the parameters are integers. In templating, there are two different kinds of parameters:

• Template parameters: These are declared in angle brackets (template<typename T>) before
the function template name.

• Call parameters: Declared in parentheses (max (T const& a, T const& b))after the function
template name.

Also, like ordinary functions, function templates can be overloaded. There can be different function
definitions with the same function name so that when that name is used in a function call, a C++
compiler must decide which one of the various candidates to call.

2.6.2 Class Templates [3] [6] [8]

Similar to functions, classes can also be parameterized with one or more types. Container classes,
which are used to manage elements of a certain type, are a typical example of this feature. The
declaration procedure is very similar to function templates. Just before the declaration, a statement
declares an identifier as a type parameter. Inside the class, the type parameter can be used like any
other type in oder to declare members and member functions. Because templates are compiled when
required, the implementation of a template class function must be in the same file as its declaration.
The class template declaration starts with the same syntax as the function templates:

template<class T>

class Item

The keyword class is used twice. The first one defines the template type specification, and the second
one is the C++ class declaration. While in funciton templates, it is the compiler the one that deduces
the template type arguments, in class templates the user must explicitly pass the template type (in
angle brackets <>).
An additional feature of templates is specialization. This feature enables the user to define a different
implementation for a template when a specific type is passed as template parameter. An example
of specialization could be as follows:

template <> class myclass <char> { ... };

This allows the definition of a specific implementation when the argument is of type char. The
fact that the angle brackets are empty (<>) allows the identification of this structure as a template
specification.

16

2.7. COUPLING OF THE KINEMATICCLOUD CLASS AND AN
INCOMPRESSIBLE SOLVER 17

2.7 Coupling of the kinematicCloud class and an incompress-
ible solver

2.7.1 Uncoupled Lagrangian Particle Tracking

First of all, it is best if the necessary libraries to couple the incompressible solver are recompiled inside
the $WM_PROJECT_USER_DIR directory. An src/lagrangian directory should have been created
inside the user directory by typing:

cd $WM_PROJECT_USER_DIR

mkdir -p src/lagrangian/

As explained at the beginning of this chapter. The -p argument is used in this case to create
the nested directories. Once this has been done, the next step is to copy the necessary files for
compilation.

cp -r $FOAM_SRC/lagrangian/intermediate $WM_PROJECT_USER_DIR/src/lagrangian

Now all the files inside the intermediate library have been copied to the user directory and the
next step is to recompile them. Here, there are two possibilities: Recompile them without changing
anything inside the \Make directory or change a few lines there and then recompile the library
inside the user’s src/ directory. The basic difference is the compilation time. If one is going to
be constantly working with this library (or any other library) and assuming that, in the process of
adding new lines to the source code and changing the functions, the library is going to be recompiled,
it is more efficient to just recompile the part of the code being used, since this will save a lot of
time in compilation time. In this case, as the libraries that are going to be used are the ones that
have the word kinematic on them, the rest of the parcel types can be deleted from the Make/files

directory, leaving only the following:

PARCELS=parcels

BASEPARCELS=$(PARCELS)/baseClasses

DERIVEDPARCELS=$(PARCELS)/derived

CLOUDS=clouds

BASECLOUDS=$(CLOUDS)/baseClasses

DERIVEDCLOUDS=$(CLOUDS)/derived

/* Cloud base classes */

$(BASECLOUDS)/kinematicCloud/kinematicCloud.C

/* kinematic parcel sub-models */

KINEMATICPARCEL=$(DERIVEDPARCELS)/basicKinematicParcel

$(KINEMATICPARCEL)/defineBasicKinematicParcel.C

$(KINEMATICPARCEL)/makeBasicKinematicParcelSubmodels.C

KINEMATICCOLLIDINGPARCEL=$(DERIVEDPARCELS)/basicKinematicCollidingParcel

$(KINEMATICCOLLIDINGPARCEL)/defineBasicKinematicCollidingParcel.C

$(KINEMATICCOLLIDINGPARCEL)/makeBasicKinematicCollidingParcelSubmodels.C

submodels/Kinematic/PatchInteractionModel/LocalInteraction/patchInteractionData.C

submodels/Kinematic/PatchInteractionModel/LocalInteraction/patchInteractionDataList.C

KINEMATICINJECTION=submodels/Kinematic/InjectionModel

$(KINEMATICINJECTION)/KinematicLookupTableInjection/kinematicParcelInjectionData.C

17

2.7. COUPLING OF THE KINEMATICCLOUD CLASS AND AN
INCOMPRESSIBLE SOLVER 18

$(KINEMATICINJECTION)/KinematicLookupTableInjection/kinematicParcelInjectionDataIO.C

$(KINEMATICINJECTION)/KinematicLookupTableInjection/kinematicParcelInjectionDataIOList.C

/* integration schemes */

IntegrationScheme/makeIntegrationSchemes.C

/* phase properties */

phaseProperties/phaseProperties/phaseProperties.C

phaseProperties/phaseProperties/phasePropertiesIO.C

phaseProperties/phasePropertiesList/phasePropertiesList.C

/* Additional helper classes */

clouds/Templates/KinematicCloud/cloudSolution/cloudSolution.C

LIB = $(FOAM_USER_LIBBIN)/libkinematiclagrangianIntermediate

Inside the \Make directory, the files file should be similar to the one above. It is important to
remember changing the location directory into the user’s one. In this case the library is written
inside username-2.2.x/plattforms/linux64GccDPOpt/lib (the folder containing the lib and bin
directories may a slightly different name).

After this, the library can be recompiled by typing the following two commands in the terminal
window:

wclean lib

wmake libso

Once the library is compiled, the next step is to link it to the incompressible solver that is going
to be created. In this first case, an incompressible transient uncoupled solver is going to be created.
For low particle concentrations, this is a sufficiently accurate assumption. The steps to create the
solver are the following ones:

• Create the solver directory inside the user’s applications/solvers directory and copy the
original pimpleFoam solver into that directory by doing:

cd $WM_PROJECT_USER_DIR/ applications/solvers/

mkdir pimpleKinematicFoam

• Copy the pimpleFoam solver into the created directory

cd pimpleKinematicFoam

cp -r $WM_PROJECT_DIR/ applications/solvers/incompressible/pimpleFoam/* .

This will copy all the files inside the pimpleFoam directory into the user directory (also pim-
pleDyMFoam and SRFPimpleFoam solvers will be copied, but one can get rid of them easily,
if they are not going to be used by doing rm -r pimpleDyMFoam SRFPimpleFoam The next
step is to change the name of the solver to the desired one by doing:

mv pimpleFoam.C pimpleKinematicFoam.C

• Modify the Make/files and Make/options

Inside files, the user should have:

pimpleKinematicFoam.C

EXE = $(FOAM_USER_APPBIN)/pimpleKinematicFoam

18

2.7. COUPLING OF THE KINEMATICCLOUD CLASS AND AN
INCOMPRESSIBLE SOLVER 19

Which tells the compiler which files to compile and to store the app created inside the user
directory.

The options file should contain the following lines for the compiler to know where to look for
the files:

LIB_USER_SRC = $(WM_PROJECT_USER_DIR)/src

EXE_INC = \

-I$(LIB_SRC)/turbulenceModels/incompressible/turbulenceModel \

-I$(LIB_SRC)/transportModels \

-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \

-I$(LIB_SRC)/finiteVolume/lnInclude\

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/fvOptions/lnInclude \

-I$(LIB_SRC)/sampling/lnInclude \

-I$(LIB_SRC)/lagrangian/basic/lnInclude \

-I$(LIB_SRC)/regionModels/surfaceFilmModels/lnInclude \

-I$(LIB_SRC)/regionModels/regionModel/lnInclude \

-I$(LIB_SRC)/lagrangian/intermediate/lnInclude \

-I$(LIB_USER_SRC)/lagrangian/intermediate/lnInclude \

#swap LIB_USER_SRC for LIB_SRC in case the $FOAM_SRC library is used

-I$(LIB_SRC)/lagrangian/distributionModels/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/properties/liquidProperties/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/properties/liquidMixtureProperties/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/properties/solidProperties/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/properties/solidMixtureProperties/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/SLGThermo/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/radiationModels/lnInclude \

-I$(LIB_SRC)/dynamicFvMesh/lnInclude \

-I$(LIB_SRC)/sampling/lnInclude

EXE_LIBS = \

-lincompressibleTurbulenceModel \

-lincompressibleRASModels \

-lincompressibleLESModels \

-lincompressibleTransportModels \

-lfiniteVolume \

-lmeshTools\

-lfvOptions \

-llagrangian\

-llagrangianIntermediate \

-lkinematiclagrangianintermediate \

-lthermophysicalFunctions \

-lsurfaceFilmModels \

-ldistributionModels \

-lregionModels \

-lspecie \

-lfluidThermophysicalModels \

-lliquidProperties \

19

2.7. COUPLING OF THE KINEMATICCLOUD CLASS AND AN
INCOMPRESSIBLE SOLVER 20

-lliquidMixtureProperties \

-lsolidProperties \

-lsolidMixtureProperties \

-lreactionThermophysicalModels \

-lSLGThermo \

-lradiationModels \

-lLESdeltas \

-lcompressibleTurbulenceModel \

-lcompressibleRASModels \

-lcompressibleLESModels \

-lregionModels \

-lsurfaceFilmModels \

-ldynamicFvMesh \

-lsampling

It is essential to tell the compiler where to look for the user’s library. The purpose of the
first line is to let the compiler know that when it reads, LIB_USER_SRC, it should go to the
WM_PROJECT_USER_DIR/src directory, and there, look for the intermediate library.

• Once this is ready, it is time to modify the createFields.H file:

At the beginning of the file the following lines are added in order to be able to look for some
properties defined in the transportProperties dictionary for further manipulation:

Info<< "\nReading transportProperties\n" << endl;

IOdictionary transportProperties

(

IOobject

(

"transportProperties",

runTime.constant(),

mesh,

IOobject::MUST_READ_IF_MODIFIED,

IOobject::NO_WRITE

)

);

dimensionedScalar rhoInfValue

(

transportProperties.lookup("rhoInf")

);

Where rhoInf is the density of the carrier phase defined in the mentioned dictionary.

• A couple of fields for the carrier phase density and viscosity have to be created too. It is an
incompressible solver and they are not going to vary, but the KinematicCloud class needs
those for the constructor. The first of those fields is the density:

volScalarField rhoInf

(

IOobject

(

20

2.7. COUPLING OF THE KINEMATICCLOUD CLASS AND AN
INCOMPRESSIBLE SOLVER 21

"rho",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh,

rhoInfValue

);

And the second one is the dynamic viscosity:

volScalarField mu

(

IOobject

(

"mu",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

laminarTransport.nu()*rhoInfValue

);

The dynamic viscosity is to be added just after the following lines:

autoPtr<incompressible::turbulenceModel> turbulence

(

incompressible::turbulenceModel::New(U, phi, laminarTransport)

);

• The last modification inside the createFields.H file is to include the constructor for the
KinematicCloud class:

word kinematicCloudName("kinematicCloud");

args.optionReadIfPresent("cloudName", kinematicCloudName);

Info<< "Constructing kinematicCloud " << kinematicCloudName << endl;

basicKinematicCloud kinematicCloud

(

kinematicCloudName,

rhoInf,

U,

mu,

g

);

As seen in this last piece of code, the constructor needs the density of the carrier phase and
the dynamic viscosity, which were created in the previous step. This constructor will also ask
for the gravity, and that means, that the user must have a g file inside the constant directory
with the value and units of the gravity force so that the readGravitationalAcceleration.H

header, which is going to be included later, is able to read it from that location.

21

2.7. COUPLING OF THE KINEMATICCLOUD CLASS AND AN
INCOMPRESSIBLE SOLVER 22

• The modifications to the pimpleKinematicFoam.C file are the following ones:

Copy the following line after #include "IOMRFZoneList.H":

#include "basicKinematicCloud.H"

This tells the compiler which cloud is going to be used. If four way coupling was necessary,
the file to paste inside the #include statement would be basicCollidingCloud.H.

Include after int main(int argc, char *argv[]) the following lines:

argList::addOption

(

"cloudName",

"name",

"specify alternative cloud name. default is ’kinematicCloud’"

);

Which adds the option for the user to specify an alternative cloud name.

Then, after #include "createMesh.H":

#include "readGravitationalAcceleration.H"

So the solver knows how and where from to read the gravitational acceleration to use it for
both calculations and the construction of the cloud.

• Finally, just before runTime.write(); the following lines are added too:

Info<< "Evolving " << kinematicCloud.name() << endl;

kinematicCloud.evolve();

• Once all this is completed, the solver can be compiled and, hopefully, the process will not
output any errors. In order to compile, inside the solver directory run, as always:

wclean

wmake

This is the procedure to create the solver. In the next chapter, the necessary files for running a
case will be specified.

2.7.2 Coupled Lagrangian Particle Tracking

As it can be seen in the calc function displayed below, the term responsible for the coupling is Su().

template<class ParcelType>

template<class TrackData>

void Foam::KinematicParcel<ParcelType>::calc

(

TrackData& td,

const scalar dt,

const label cellI

)

{

// Define local properties at beginning of time step

// ~~~

22

2.7. COUPLING OF THE KINEMATICCLOUD CLASS AND AN
INCOMPRESSIBLE SOLVER 23

const scalar np0 = nParticle_;

const scalar mass0 = mass();

// Reynolds number

const scalar Re = this->Re(U_, d_, rhoc_, muc_);

// Sources

//~~~~~~~~

// Explicit momentum source for particle

vector Su = vector::zero;

// Linearised momentum source coefficient

scalar Spu = 0.0;

// Momentum transfer from the particle to the carrier phase

vector dUTrans = vector::zero;

// Motion

// ~~~~~~

// Calculate new particle velocity

this->U_ = calcVelocity(td, dt, cellI, Re, muc_, mass0, Su, dUTrans, Spu);

// Accumulate carrier phase source terms

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

if (td.cloud().solution().coupled())

{

// Update momentum transfer

td.cloud().UTrans()[cellI] += np0*dUTrans;

// Update momentum transfer coefficient

td.cloud().UCoeff()[cellI] += np0*Spu;

}

}

And the function to calculate the new particle velocity (calcVelocity):

//- Calculate new particle velocity

template<class TrackData>

const vector calcVelocity

(

TrackData& td,

const scalar dt, // timestep

const label cellI, // owner cell

const scalar Re, // Reynolds number

const scalar mu, // local carrier viscosity

const scalar mass, // mass

const vector& Su, // explicit particle momentum source

vector& dUTrans, // momentum transfer to carrier

scalar& Spu // linearised drag coefficient

) const;

23

2.7. COUPLING OF THE KINEMATICCLOUD CLASS AND AN
INCOMPRESSIBLE SOLVER 24

If the solution is properly coupled, the solver will write out two fields:

• nameoftheCloud:Ucoeff It is of type volscalarField::DimensionedInternalField It is a nonuniform List<vector>

• nameoftheCloud:Utrans It is of type volVectorField::DimensionedInternalField It is a nonuniform List<scalar>

However, if the solution is not coupled, these fields will be written to the runTime but instead of
being non-uniform lists, they will be uniform 0; and uniform (0 0 0); respectively. First, and
provided that the KinematicClass is being coupled to an incompressible solver, the momentum
will have to be divided by the density of the carrier phase. In pimpleFoam and the rest of the
incompressible solver in OpenFOAM, the equations are divided by the carrier phase density. An
easy way of doing this is creating the inverse of the density and then, in the fileUEqn.H, multiply the
momentum by that inverse, so there will be no mismatched units. Inside the createFields.H the
following line is added after the density is read from the particleProperties dictionary:

dimensionedScalar invrhoInf("invrhoInf",(1.0/rhoInfValue));

Then, in order to create the coupled version of the solver it is necessary to include this momentum
transfer into the UEqn.H, so the file will look now like:

// Solve the Momentum equation

tmp<fvVectorMatrix> UEqn

(

fvm::ddt(U)

+ fvm::div(phi, U)

+ turbulence->divDevReff(U)

==

fvOptions(U)

+invrhoInf*kinematicCloud.SU(U)

);

UEqn().relax();

fvOptions.constrain(UEqn());

volScalarField rAU(1.0/UEqn().A());

if (pimple.momentumPredictor())

{

solve

(

UEqn()

==

-fvc::grad(p)

);

fvOptions.correct(U);

}

Finally, once all the changes are done and the files are saved the final step is to run in the terminal
(inside the solver directory):

24

2.7. COUPLING OF THE KINEMATICCLOUD CLASS AND AN
INCOMPRESSIBLE SOLVER 25

wclean

wmake

Given that the two-way coupling is going to be switched on and off inside the kinematicCloudProperties
dictionary, it is probably a good option to create a unique solver and decide whether the simulation
is going to be coupled or uncoupled switching from on to off in the mentioned dictionary.

25

Chapter 3

Preprocessing

3.1 Geometry definition

The geometry chosen for this tutorial is a very simple one, consisting of a 100 mm length quadran-
gular pipe with a 90 degrees bend (figure 3.1).

Figure 3.1: Geometry of the pipe used for the tutorial case.

26

3.2. THE 0/ DIRECTORY 27

The geometry is defined in the blockMeshDict dictionary and in order to generate the rest of
the mesh files needed by OpenFOAM, the blockMesh command has to be run in the case directory.

3.2 The 0/ directory

In order to have a more efficient case solution it is recommended to run the case without the particles
until it reaches the steady state (simpleFoam is the most suitable one for this simulation) and then
use the command,

mapFields /Path-To-Steady-State-Case-Directory -consistent

to map the fields obtained for the fluid flow into the transient case with particles and use them as
initial conditions in our 0 directory. Regarding the application settings, before running mapFields,
the starting time in the transient case has to be the same one as the time step being mapped from the
steady state solution, and the directory created by the application and containing the non-uniform
scalar and vector fields has to be renamed as 0, once mapFields has finished the transfer.
For the steady-state case, three directories are necessary: 0, constant and system. Once the
steady-state case has been defined, the command to run it is as follows:

simpleFoam >&log&

The calculation process can also be viewed (and stopped with ctrl + C) in the terminal typing:

tail -f log

The case can also be killed by typing,

pidof simpleFoam

Which outputs the PID of the process and then, being PID the number obtained in the terminal
window, run,

kill PID

Once the steady state case fields are correctly mapped into the transient case directory, it is time to
set up the necessary files for the lagrangian simulation.

3.3 The constant/ directory

Inside the constant directory the user must specify the properties of the lagrangian simulation in a
dictionary called kinematicCloudProperties. The example used for this tutorial can also be found
in Appendix 1. A file named g is necessary for the construction of the cloud, as explained before.
This file must, at least, contain:

FoamFile

{

version 2.0;

format ascii;

class uniformDimensionedVectorField;

location "constant";

object g;

}

// * //

dimensions [0 1 -2 0 0 0 0];

value (0 -9.81 0);

27

3.4. THE SYSTEM/ DIRECTORY 28

Where the gravity vector is specified, depending on which reference is being used. For this case, the
gravity is in the -̂ direction.
In this particular case, a k−ε model has been chosen. For this, a RASProperties file is also required
containing:

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object RASProperties;

}

// * //

RASModel kEpsilon;

turbulence on;

printCoeffs on;

And as explained before, the transportProperties file, which should look similar to:

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object transportProperties;

}

// * //

transportModel Newtonian;

nu nu [0 2 -1 0 0 0 0] 1e-06;

rhoInf rhoInf [1 -3 0 0 0 0 0] 1000;

3.4 The system/ directory

The files inside the system directory will be the usual ones, i.e., fvSchemes, fvSolution and
controlDict. However, it is good to pay some attention in this kind of simulations to the Courant
number. The Courant number is defined as:

C =
u∆t

∆x
(3.1)

Being u the velocity, ∆x the space interval and ∆t the time interval. Keeping the courant number
under the value of 1 will help the solution converge, specially when dealing with coupled simulations.

3.5 Running the case

Once the case is properly set up, it can be run by typing:

pimpleKinematicFoam >&log&

28

3.5. RUNNING THE CASE 29

which will allow later the use of foamLog to extract the residuals relative to each of the variables for
plotting.

29

Chapter 4

Postprocessing

4.1 Lagrangian Particles in Paraview

There are actually two ways for visualization of the lagrangian cloud in paraview. The first one is
to transform the case data into VTK format by doing:

foamToVTK

The second one is to run paraFoam in the terminal window and then click on ”Skip Zero Time”
(no parcels have been released at zero time. That is why no lagrangian fields or cloud are available
for display). Once this is done, any of the lagrangian fields as well as the kinematic cloud can be
displayed with paraview just by checking the box relative to each one of them.

Figure 4.1: Check ”Skip Zero Time” box

30

4.2. RESULTS OF COUPLED AND UNCOUPLED SIMULATIONS 31

Figure 4.2: Check ”kinematicCloud-lagrangian”
and any of the available lagrangian fields

4.2 Results of Coupled and Uncoupled Simulations

As expected, in this particular case, the case with two-way coupling is practically identical to the
one-way coupled. This is due to the fact that the momentum transferred between phases is actually
negligible, being the values very close to zero. In case of the uncoupled simulation, the solver
allows the user to set up a higher courant number (maxCo in controlDict), which, consequently will
enlarge the time step, and will be reflected in a much faster simulation. However, in the coupled
case, instabilities might appear when trying to set a high courant number, causing the solver to
diverge. Thus, the courant number to be set up in the controlDict dictionary must be carefully
chosen, taking into account the size of our mesh the velocity and the time-step.

4.3 Post-processing erosion in Paraview 3.12.0

In order to postprocess erosion in Paraview, the ”kinematicCloudQ” field box has to be checked ito
display the erosion field as shown in picture 4.4.

What paraview is representing in the erosion contours is the volume of material eroded, as the
sum of the material eroded by each of the individual impacts of the particles at each face.

31

4.3. POST-PROCESSING EROSION IN PARAVIEW 3.12.0 32

Figure 4.3: Visualization of the particles in paraview

Figure 4.4: Erosion contours in paraview

32

Chapter 5

Appendix 1

5.1 kinematicCloudProperties Dictionary

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object kinematicCloudProperties;

}

// * //

solution

{

active true; //can be set to true or false

coupled false; //true or false for coupled or uncoupled simulations

transient yes; //yes or no, no for steady-state calculations

cellValueSourceCorrection off; //when set to on it activated the

//correction of the momentum tranferred to the eulerian phase

sourceTerms

{

schemes

{

U semiImplicit 1;//explicit or semiImplicit

//ALSO specify relaxCoeff for each of the fields

}

}

interpolationSchemes

{

rho cell;

33

5.1. KINEMATICCLOUDPROPERTIES DICTIONARY 34

U cellPoint;

mu cell;

//curlUcDt cell; //field used for Lift force calculations

//DucDt cell;//filed used for pressureGradient calculations

/*Available schemes are:

cell

cellPatchConstrained

cellPoint

cellPointFace

cellPointWallModified

pointMVC

*/

}

integrationSchemes

{

U Euler;

/*Available schemes are:A dictionary with the value of

Euler

analytical

*/

}

}

constantProperties

{

//parcelTypeId 1:

//rhoMin 1e-15;

//minParticleMass 1e-15:

rho0 3217;

youngsModulus 700e9;

poissonsRatio 0.187;

}

subModels

{

particleForces

{

sphereDrag;

gravity;

/*SaffmanMeiLiftForce //TomiYamaLift may be chosen instead

{

U U;

}

*/

/*paramagnetic

{

magneticSusceptibility -6.3e-9; //m^3/kg for graphite

HdotGradH U;

*/ }

/*pressureGradient

34

5.1. KINEMATICCLOUDPROPERTIES DICTIONARY 35

{

U U;

}

*/

/*virtualMass

{

Cvm 0.5;

}

*/

/*nonInertialFrame

{

linearAccelerationName linearAc;

linearAcceleration 10;

angularVelocityName angVelo;

angularVelocity 5;

angularAccelerationName angAcc

angularAcceleration 5;

}

*/

//SRF;

}

injectionModels

{

model1

{

type patchInjection;

patchName inlet;

SOI 0; //Start of injection

massFlowRate 0.01;

massTotal 0.2;

parcelBasisType mass;

flowRateProfile 0.01;

sizeDistribution

{

type RosinRammler;

RosinRammlerDistribution

{

minValue 200e-6;

maxValue 300e-6;

d 250e-6;

n 3;

}

}

duration 20;

parcelsPerSecond 500000;

U0 (0 -15 0);

}

}

35

5.1. KINEMATICCLOUDPROPERTIES DICTIONARY 36

dispersionModel none;

patchInteractionModel standardWallInteraction;

heatTransferModel none;

surfaceFilmModel none;

collisionModel none;

radiation off;

pairCollisionCoeffs

{

// Maximum possible particle diameter expected at any time

/* maxInteractionDistance 0.006;

writeReferredParticleCloud no;

pairModel pairSpringSliderDashpot;

pairSpringSliderDashpotCoeffs

{

useEquivalentSize no;

alpha 0.12;

b 1.5;

mu 0.52;

cohesionEnergyDensity 0;

collisionResolutionSteps 12;

};

wallModel wallLocalSpringSliderDashpot;

wallLocalSpringSliderDashpotCoeffs

{

useEquivalentSize no;

collisionResolutionSteps 12;

walls

{

youngsModulus 1e10;

poissonsRatio 0.23;

alpha 0.12;

b 1.5;

mu 0.43;

cohesionEnergyDensity 0;

}

frontAndBack

{

youngsModulus 1e10;

poissonsRatio 0.23;

alpha 0.12;

b 1.5;

mu 0.1;

36

5.1. KINEMATICCLOUDPROPERTIES DICTIONARY 37

cohesionEnergyDensity 0;

}

};*/

}

standardWallInteractionCoeffs

{

type rebound;

}

}

cloudFunctions

{

particleErosion

{

functionObjectLibs ("libcloudFunctionObjects.so");

enabled true;

outputControl outputTime;

log true;

valueOutput true;

p 11000000; //yield stress for aluminium = 11000000 Pa or 11 MPa

psi 2;//Ratio of the depth of contact to the depth of cut (default value = 2)

K 2; //Ratio of vertical to horizontal force components (2 for angular abrassive grains)

patches

(

moving-wall

);

}

}

// *** //

37

Chapter 6

Appendix 2

6.1 blockMeshDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// * //

convertToMeters 0.001;

vertices

(

(0 0 0)//0

(0 50 0)//1

(0 50 -10)//2

(0 0 -10)//3

(10 10 0)//4

(10 50 0)//5

(10 50 -10)//6

(10 10 -10)//7

(50 0 0)//8

(50 10 0)//9

(50 10 -10)//10

(50 0 -10)//11

(10 0 -10)//12

(10 0 0)//13

(0 10 -10)//14

(0 10 0)//15

);

38

6.1. BLOCKMESHDICT 39

blocks

(

hex (13 4 9 8 12 7 10 11) (10 40 10) simpleGrading (1 1 1)

hex (0 15 4 13 3 14 7 12) (10 10 10) simpleGrading (1 1 1)

hex (15 1 5 4 14 2 6 7) (40 10 10) simpleGrading (1 1 1)

);

edges

(

);

boundary

(

inlet

{

type patch;

faces

(

(1 5 6 2)

);

}

outlet

{

type patch;

faces

(

(9 8 11 10)

);

}

walls

{

type wall;

faces

(

(4 9 10 7)

(4 13 8 9)

(12 11 8 13)

(7 10 11 12)

(3 12 13 0)

(0 13 4 15)

(0 15 14 3)

(3 14 7 12)

(15 4 5 1)

(5 4 7 6)

(6 7 14 2)

(14 15 1 2)

);

}

);

mergePatchPairs

(

39

6.1. BLOCKMESHDICT 40

);

// *** //

40

Bibliography

[1] G.J. Brown. Erosion prediciton in slurry pipeline tee-junctions. Applied Mathematical Modelling,
(26):155–170, 2002.

[2] cplusplus.com. C++ tutorial, 2012. http://www.cplusplus.com/doc/tutorial/.

[3] Nicolai M. Josuttis David Vandevoorde. C++ Templates. Addison Wesley, 2002.

[4] Iain Finnie. Erosion of surfaces by solid particles. Wear, (3):87–103, 1960.

[5] Iain Finnie. Some observations on the erosion of ductile metals. Wear, (19):81–90, 1972.

[6] OpenFOAM Foundation. Openfoam c++ documentation, 2011. http://www.openfoam.org/

docs/cpp/.

[7] OpenFOAM Foundation. Openfoam programmer’s guide, 2011. http://foam.sourceforge.

net/docs/Guides-a4/ProgrammersGuide.pdf.

[8] OpenFOAM Foundation. Openfoam user guide, 2011. http://www.openfoam.org/docs/

user/.

[9] Chalmers University of Technology H̊a kan Nilsson. Msc/phd course in cfd with opensource
software, 2013 and previous years, 2013. http://www.tfd.chalmers.se/~hani/kurser/OS_

CFD/.

[10] A.W. Heemink J.W. Stijnen and H.X. Lin. An efficient 3d particle transport model for use in
stratified flow. International journal for numerical methods in fluids, (51):331–350, 2006.

[11] Special Interest Group on Multiphase Flows (SIG Multiphase). Tutorials for particle based
methods, 2011. http://openfoamwiki.net/index.php/Tutorials_for_particle_based_

methods.

[12] Aurélia Vallier. Coupling of vof with lpt in openfoam, 2011. http://www.tfd.chalmers.se/

~hani/kurser/OS_CFD_2011/OF_kurs_LPT_120911.pdf.

[13] Aurélia Vallier. Tutorial lagrangian particle tracking, 2011. http://www.tfd.chalmers.se/

~hani/kurser/OS_CFD_2009/AureliaVallier/oscfd09_present_aureliapdf.pdf.

41

