
Santiago Márquez Damián-Final Work-Computational Fluid Dynamics

Description and utilization of interFoammultiphase solver

1 General description of the OpenFOAM suite

”OpenFOAM (Open Field Operation and Manipulation) is primarily a C++ toolbox for
the customisation and extension of numerical solvers for continuum mechanics problems,
including computational fluid dynamics (CFD). It comes with a growing collection of pre-
written solvers applicable to a wide range of problems. It is produced by UK company
OpenCFD Ltd. and is released open source under the GPL.

Original development started in the late 1980s at Imperial College, London, motivated
by a desire to find a more powerful and flexible general simulation platform than the defacto
standard at the time, Fortran. Since then it has evolved by exploiting the latest advanced
features of the C++ language, having been effectively re-written several times over. The
predecessor, FOAM, was sold by UK company Nabla Ltd. before being released open source
in 2004.

OpenFOAM has been pioneering in a number of ways:

• Amongst the first major scientific packages written in C++ (other leading CFD compa-
nies have released or are working on next-generation C++ codes),

• Use of C++ operator overloading to permit relatively simple, top-level human-readable
descriptions of partial differential equations makes OpenFOAM akin to a programming
language for physical simulation,

• First major general-purpose CFD package to use polyhedral cells. This functionality is
a natural consequence of the hierarchical description of simulation objects,

• First and most capable general purpose CFD package to be released under an open-
source license,

OpenFOAM compares favourably with the capabilities of most leading general-purpose
commercial closed-source CFD packages. It relies on the user’s choice of third party pre-
and post-processing utilities, and ships with:

• a plugin (paraFoam) for visualisation of solution data and meshes in ParaView.

• a wide range of mesh converters allowing import from a number of leading commercial
packages

• an automatic hexahedral mesher to mesh engineering configurations

OpenFOAM was conceived as a continuum mechanics platform but is ideal for building
multi-physics simulations. For example, it comes with a library and solvers for efficiently
tracking particles in a multiphase flow using the lagrangian approach.

Standard Solvers include:

1

• Basic CFD

• Incompressible flows

• Compressible flows

• Multiphase flows

• DNS and LES

• Combustion

• Heat transfer

• Electromagnetics

• Solid dynamics

• Finance

Apart from the standard solvers, one of the distinguishing features of OpenFOAM is its
relative ease in creating custom solver applications. OpenFoam allows the user to use syntax
that closely resemble the partial differential equations being solved”[1].

2 Introduction to Volume of Fluid Theory. Surface recon-
struction strategies

2.1 Finite Volume Method

Respect of Finite Volume Method, among all the bibliography, books from Versteeg and
Malalasekera [4] and Ferziger and Peric [3] are the most referenced and authoritative. Fur-
thermore Jasak’s PhD thesis [5] provides an excellent description of the method using com-
pact and powerful vector and tensorial notation suitable for comprehension and implemen-
tation especially in the OpenFOAM’s frame.

Following is an annotated version of chapter 3 of Jasak’s PhD thesis. Original text is
between quotes and annotations are added as footnotes.

2.1.1 Introduction

”The purpose of any discretisation practice is to transform one or more partial differential
equations into a corresponding system of algebraic equations. The solution of this system
produces a set of values which correspond to the solution of the original equations at some
pre-determined locations in space and time, provided certain conditions, to be defined later,
are satisfied. The discretisation process can be divided into two steps: the discretisation of
the solution domain and equation discretisation ([[6], [5] ref. 97]).

The discretisation of the solution domain produces a numerical description of the com-
putational domain, including the positions of points in which the solution is sought and the
description of the boundary. The space is divided into a finite number of discrete regions,
called control volumes or cells. For transient simulations, the time interval is also split into
a finite number of time-steps. Equation discretisation gives an appropriate transformation

2

of terms of governing equations into algebraic expressions.

This [section] presents the Finite Volume method (FVM) of discretisation, with the fol-
lowing properties:

• The method is based on discretising the integral form of governing equations over each
control volume. The basic quantities, such as mass and momentum, will therefore be
conserved at the discrete level.

• Equations are solved in a fixed Cartesian coordinate system on the mesh that does not
change in time. The method is applicable to both steady-state and transient calculations.

• The control volumes can be of a general polyhedral shape, with a variable number of
neighbours, thus creating an arbitrarily unstructured mesh. All dependent variables
share the same control volumes, which is usually called the colocated or non-staggered
variable arrangement ([See [5] refs. 117 and 109]).

• Systems of partial differential equations are treated in the segregated way ([See [5]
refs. 107 and 137]), meaning that they are solved one at a time, with the inter-equation
coupling treated in the explicit manner. Non-linear differential equations are linearised
before the discretisation and the non-linear terms are lagged.

[. . .]

2.1.2 Discretisation of the Solution Domain

Discretisation of the solution domain produces a computational mesh on which the govern-
ing equations are subsequently solved. It also determines the positions of points in space and
time where the solution is sought. The procedure can be split into two parts: discretisation
of time and space.

Since time is a parabolic coordinate ([7]), the solution is obtained by marching in time
from the prescribed initial condition. For the discretisation of time, it is therefore sufficient
to prescribe the size of the time-step that will be used during the calculation.

The discretisation of space for the Finite Volume method used in this study requires a
subdivision of the domain into control volumes (CV). Control volumes donot overlap and
completely fill the computational domain. In the present study all variables share the same
CV-s.

A typical control volume is shown in Fig. 1. The computational point P is located at the

3

3.2 Discretisation of the Solution Domain 75

The solution procedure for systems of partial differential equations requires spe

cial attention. The generalised segregated approach for pressurevelocity coupling

is described in Section 3.8. Finally, some closing remarks are given in Section 3.9.

3.2 Discretisation of the Solution Domain

Discretisation of the solution domain produces a computational mesh on which the

governing equations are subsequently solved. It also determines the positions of

points in space and time where the solution is sought. The procedure can be split

into two parts: discretisation of time and space.

N

P

f

S
x

z

y

Figure 3.1: Control volume.

Since time is a parabolic coordinate (Patankar [105]), the solution is obtained

by marching in time from the prescribed initial condition. For the discretisation of

time, it is therefore sufficient to prescribe the size of the timestep that will be used

during the calculation.

The discretisation of space for the Finite Volume method used in this study

requires a subdivision of the domain into control volumes (CV). Control volumes do

Figure 1: Control volume

centroid of the control volumes1, such that:∫
VP

(x − xP) dV = 0 (1)

The control volume is bounded by a set of flat faces and each face is shared with only
one neighbouring CV. The topology of the control volume is not important – it is a general
polyhedron.

The cell faces in the mesh can be divided into two groups – internal faces (between two
control volumes) and boundary faces, which coincide with the boundaries of the domain.
The face area vector S f is constructed for each face in such a way that it points outwards from
the cell with the lower label, is normal to the face and has the magnitude equal to the area of
the face. The cell with the lower label is called the ’owner’ of the face – its label is stored in
the ’owner’ array. The label of the other cell (’neighbour’) is stored in the ’neighbour’ array.
Boundary face area vectors point outwards from the computational domain – boundary faces

1By definition centroid position implies:

VP xP =

∫
VP

x dV

so grouping at right hand side

0 =

∫
VP

x dV − xP

∫
VP

dV

and due xP is constant

0 =

∫
VP

(x − xP) dV

4

are ’owned’ by the adjacent cells. For the shaded face in Fig. 1, the owner and neighbour
cell centres are marked with P and N , as the face area vector S f points outwards from the P
control volume. For simplicity, all faces of the control volume will be marked with f , which
also represents the point in the middle of the face (see Fig. 1).

The capability of the discretisation practice to deal with arbitrary control volumes gives
considerable freedom in mesh generation. It is particularly useful in meshing complex
geometrical configurations in three spatial dimensions. Arbitrarily unstructured meshes
also interact well with the concept of local grid refinement, where the computational points
are added in the parts of the domain where high resolution is necessary, without disturbing
the rest of the mesh.

2.1.3 Discretisation of the Transport Equation

The standard form of the transport equation for a scalar property φ is:

∂ρφ

∂t︸︷︷︸
temporal derivative

+ ∇•
(
ρUφ

)
︸ ︷︷ ︸

convection term

−∇•
(
ρΓφ∇φ

)
︸ ︷︷ ︸
diffusion term

= Sφ
(
φ
)

︸︷︷︸
source term

(2)

This is a second-order equation, as the diffusion term includes the second derivative of
φ in space. For good accuracy, it is necessary for the order of the discretisation to be equal to
or higher than the order of the equation that is being discretised. The discretisation practice
adopted in this study is second-order accurate in space and time and will be presented in the
rest of this [section]. The individual terms of the transport equation will be treated separately.

In certain parts of the discretisation it is necessary to relax the accuracy requirement, either
to accommodate for the irregularities in the mesh structure or to preserve the boundedness
of the solution . Any deviation from the prescribed order of accuracy creates a discretisation
error, which is of the order of other terms in the original equation and dissappers only in the
limit of excessively fine mesh. Particular attention will therefore be paid to the sources of
discretisation error representing such behaviour.

The accuracy of the discretisation method depends on the assumed variation of the
function φ = φ (x, t) in space and time around the point P . In order to obtain a second-order
accurate method, this variation must be linear in both space and time, i.e. it is assumed that:

φ (x) = φP + (x − xP) •
(
∇φ

)
P

(3)

φ (t + ∆t) = φt + ∆t
(
∂φ

∂t

)t

(4)

where

φP = φ (xP) (5)

φt = φ (t) (6)

Let us consider the Taylor series expansion in space of a function around the point x:

5

φ (x) = φP + (x − xP) •
(
∇φ

)
P

+
1
2

(x − xP)2 :
(
∇∇φ

)
P

+
1
3!

(x − xP)3 ::
(
∇∇∇φ

)
P

+ . . . +
1
n!

(x − xP)n :::︸︷︷︸
n

∇∇ . . .∇︸ ︷︷ ︸
n

φ

P

+ . . . (7)

The expression (x − xP)n in Eqn. (7) and consequent equations in this study represents
the nth tensorial product of the vector (x − xP) with itself, producing an nth rank tensor. The
operator ’:::’ is the inner product of two nth rank tensors, creating a scalar.

Comparison between the assumed variation, Eqn. (3), and the Taylor series expansion,
Eqn. (7), shows that the first term of the truncation error scales with

∣∣∣(x − xP)2
∣∣∣, which is for

a 1-D situation equal to the square of the size of the control volume. The assumed spatial
variation is therefore second-order accurate in space. An equivalent analysis shows that the
truncation error in Eqn. (4) scales with ∆t2, resulting in the second-order temporal accuracy.

The Finite Volume method requires that Eqn. (2) is satisfied over the control volume VP

around the point P in the integral form:

∫ t+∆t

t

[
∂
∂t

∫
VP

ρφ dV +

∫
VP

∇•
(
ρUφ

)
dV −

∫
VP

∇•
(
ρΓφ∇φ

)
dV

]
dt

=

∫ t+∆t

t

(∫
VP

Sφ
(
φ
)

dV
)

dt (8)

The discretisation of Eqn. (8) will now be examined term by term.

2.1.4 Discretisation of Spatial Terms

Let us first examine the discretisation of spatial terms. The generalised form of Gauss’
theorem will be used throughout the discretisation procedure, involving these identities:∫

V
∇•a dV =

∮
∂V

a•dS (9)

∫
V
∇φ dV =

∮
∂V
φ dS (10)

∫
V
∇a dV =

∮
∂V

a ⊗ dS (11)

where ∂V is the closed surface bounding the volume V and dS represents an infinitesimal
surface element with associated outward pointing normal on ∂V.

A series of volume and surface integrals needs to be evaluated. Taking into account the
prescribed variation of φ over the control volume P , Eqn. (3), it follows:

6

∫
VP

φ (x) dV =

∫
VP

[
φP + (x − xP) •

(
∇φ

)
P

]
dV

= φP

∫
VP

dV +

[∫
VP

(x − xP) dV
]
•

(
∇φ

)
P

= φP VP (12)

where VP is the volume of the cell. The second integral in Eqn. (3) is equal to zero because
the point P is the centroid of the control volume.

Let us now consider the terms under the divergence operator. Having in mind that the
CV is bounded by a series of flat faces, Eqn. (9) can be transformed into a sum of integrals
over all faces:

∫
VP

∇•adV =

∮
∂VP

a•dS

=
∑

f

(∫
f
a•dS

)
(13)

The assumption of linear variation of φ leads to the following expression for the face
integral in Eqn. (13)2:

∫
f
adS =

(∫
f
dS

)
•a f +

[∫
f

(
x − x f

)
dS

]
: (∇a) f

= S•a f (14)

Combining Eqs. (12, 13 and 14), a second-order accurate discretised form of the Gauss’
theorem is obtained3:

(∇•a) VP =
∑

f

S•a f (15)

Here, the subscript f implies the value of the variable (in this case, a) in the middle of the
face and S is the outward-pointing face area vector. In the current mesh structure, the face

2In the first term of right hand side, expresion a f is taken off the integral symbol due it is constant, it is the
value at the centroid of the face.

3Starting with Gauss’ theorem for a continuum we have:∫
V
∇•a dV =

∮
∂V

a•dS

applying equation 12 to left hand side term and 14 to right hand side term:

∇•a VP =
∑

f

S•a f

another useful relation is

∇•a =

∑
f S•a f

VP

7

area vector S f point outwards from P only if f is ’owned’ by P . For the ’neighbouring’ faces
S f points inwards, which needs to be taken into account in the sum in Eqn. (15). The sum
over the faces is therefore split into sums over ’owned’ and ’neighbouring’ faces:∑

f

S•a f =
∑

owner

S f •a f −

∑
neighbour

S f •a f (16)

This is true for every summation over the faces. In the rest of the text, this split is
automatically assumed.

Convection term The discretisation of the convection term is obtained using Eqn. (15):

∫
VP

∇•
(
ρUφ

)
dV =

∑
f

S•
(
ρUφ

)
f

=
∑

f

S•
(
ρU

)
f φ f

=
∑

f

Fφ f (17)

where F in Eqn. (17) represents the mass flux through the face:

F = S•
(
ρU

)
f (18)

The calculation of these face fluxes will later be discussed separately in Section 2.1.8. For
now it can be assumed that the flux is calculated from the interpolated values of ρ and U4.

Eqs. (17 and 18) also require the face value of the variable φ calculated from the values
in the cell centres, which is obtained using the convection differencing scheme.

Before we continue with the formulation of the convection differencing scheme, it is
necessary to examine the physical properties of the convection term. Irrespective of the
distribution of the velocity in the domain, the convection term does not violate the bounds
of φ given by its initial distribution. If, for example, φ initially varies between 0 and 1, the
convection term will never produce the values of φ that are lower than zero or higher than
unity. Considering the importance of boundedness in the transport of scalar properties of
interest [. . .]5, it is essential to preserve this property in the discretised form of the term.

Convection Differencing Scheme The role of the convection differencing scheme is to de-
termine the value of φ on the face from the values in the cell centres. In the framework of
arbitrarily unstructured meshes, it would be impractical to use any values other than φP and
φN, because of the storage overhead associated with the additional addressing information.
We shall therefore limit ourselves to differencing schemes using only the nearest neighbours
of the control volume.

4These are interpolated values at the faces.
5See Section 1.2.1 of Jasak’s thesis

8

3.3 Discretisation of the Transport Equation 81

Eqs. (3.17 and 3.18) also require the face value of the variable φ calculated from

the values in the cell centres, which is obtained using the convection differencing

scheme.

Before we continue with the formulation of the convection differencing scheme, it

is necessary to examine the physical properties of the convection term. Irrespective

of the distribution of the velocity in the domain, the convection term does not violate

the bounds of φ given by its initial distribution. If, for example, φ initially varies

between 0 and 1, the convection term will never produce the values of φ that are

lower than zero or higher than unity. Considering the importance of boundedness

in the transport of scalar properties of interest (see Section 1.2.1), it is essential to

preserve this property in the discretised form of the term.

3.3.1.2 Convection Differencing Scheme

The role of the convection differencing scheme is to determine the value of φ on the

face from the values in the cell centres. In the framework of arbitrarily unstructured

meshes, it would be impractical to use any values other than φP and φN , because of

the storage overhead associated with the additional addressing information. We shall

therefore limit ourselves to differencing schemes using only the nearest neighbours

of the control volume.

P Nf

d

φ

φ

P

N

φf

Figure 3.2: Face interpolation.

Assuming the linear variation of φ between P and N , Fig. 3.2, the face value is

calculated according to:

φf = fxφP + (1− fx)φN . (3.19)

Figure 2: Face interpolation

Assuming the linear variation of φ between P and N , Fig. 2, the face value is calculated
according to:

φ f = fxφP +
(
1 − fx

)
φN (19)

Here, the interpolation factor fx is defined as the ratio of distances f N and PN :

fx =
f N

PN
(20)

The differencing scheme using Eqn. (19) to determine the face value of φ is called Central
Differencing (CD). Although this has been the subject of some debate, Ferziger and Peric [3]
show that it is second order accurate even on non-uniform meshes. This is consistent with
the overall accuracy of the method. It has been noted, however, that CD causes unphysical
oscillations in the solution for convection-dominated problems ([7], [6]), thus violating the
boundedness of the solution.

An alternative discretisation scheme that guarantees boundedness is Upwind Differenc-
ing (UD). The face value of φ is determined according to the direction of the flow:

φ f =

φ f = φP for F ≥ 0

φ f = φN for F < 0
(21)

Boundedness of the solution is guaranteed through the sufficient boundedness criterion
for systems of algebraic equations (see e.g. [7]). [. . .], boundedness of UD is effectively
insured at the expense of the accuracy, by implicitly introducing the numerical diffusion
term6. This term violates the order of accuracy of the discretisation and can severely distort
the solution.

Blended Differencing (BD) ([See [5] ref. 109]) represents an attempt to preserve both
boundedness and accuracy of the solution. It is a linear combination of UD, Eqn. (19) and
CD, Eqn. (19):

φ f =
(
1 − γ

) (
φ f

)
UD

+ γ
(
φ f

)
CD

(22)

6See Jasak’s thesis section 3.6

9

or

φ f =
[(

1 − γ
)

max
(
sgn (F) , 0

)
+ γ fx

]
φP

+
[(

1 − γ
)

min
(
sgn (F) , 0

)
+ γ

(
1 − fx

)]
φN (23)

The blending factor γ, 0 ≤ γ ≤ 1, determines how much numerical diffusion will be
introduced. Peric ([See [5] ref. 109]) proposes a constant γ for all faces of the mesh. For γ = 0
the scheme reduces to UD.

Many other attempts to find an acceptable compromise between accuracy and bound-
edness have been made [. . .]7. The most promising approach at this stage combines a
higher-order scheme with Upwind Differencing on a face-by-face basis, based on different
boundedness criteria8.

Diffusion term The diffusion term will be discretised in a similar way. Using the assump-
tion of linear variation of φ and Eqn. 15), it follows:

∫
VP

∇•
(
ρΓφ∇φ

)
dV =

∑
f

S•
(
ρΓφ∇φ

)
f

=
∑

f

(
ρΓφ

)
f
S
(
∇φ

)
f

(24)

3.3 Discretisation of the Transport Equation 83

The blending factor γ, 0 ≤ γ ≤ 1, determines how much numerical diffusion will be

introduced. Perić [109] proposes a constant γ for all faces of the mesh. For γ = 0

the scheme reduces to UD.

Many other attempts to find an acceptable compromise between accuracy and

boundedness have been made (see Section 1.2.1). The most promising approach at

this stage combines a higherorder scheme with Upwind Differencing on a faceby

face basis, based on different boundedness criteria. We shall return to the issues

of boundedness, accuracy and convergence of convection differencing schemes in

Section 3.4.

3.3.1.3 Diffusion Term

The diffusion term will be discretised in a similar way. Using the assumption of

linear variation of φ and Eqn. (3.15), it follows:
�

VP

∇•(ρΓφ∇φ) dV =
�

f

S.(ρΓφ∇φ)f

=
�

f

(ρΓφ)fS.(∇φ)f . (3.24)

If the mesh is orthogonal, i.e. vectors d and S in Fig. 3.3 are parallel, it is possible

P Nfd

S

Figure 3.3: Vectors d and S on a nonorthogonal mesh.

to use the following expression:

S.(∇φ)f = |S|
φN − φP

|d|
. (3.25)

Using Eqn. (3.25), the face gradient of φ can be calculated from the two values

around the face. An alternative would be to calculate the cellcentred gradient for

Figure 3: Vector d and S on a non-orthogonal mesh

If the mesh is orthogonal, i.e. vectors d and S in Fig. 3 are parallel, it is possible to use
the following expression:

S•
(
∇φ

)
f

= |S|
φN − φP

|d|
(25)

Using Eqn. (25), the face gradient of φ can be calculated from the two values around the
face. An alternative would be to calculate the cell-centred gradient for the two cells sharing

7See Jasak’s thesis Section 1.2.1
8See Jasak’s thesis Section 3.4

10

the face as9: (
∇φ

)
P

=
1

VP

∑
f

Sφ f (26)

interpolate it to the face: (
∇φ

)
f

= fx

(
∇φ

)
P

+
(
1 − fx

) (
∇φ

)
N

(27)

and dot it with S. Although both of the above-described methods are second-order ac-
curate, Eqn. (27) uses a larger computational molecule10. The first term of the truncation
error is now four times larger than in the first method, which in turn cannot be used on
non-orthogonal meshes.

Unfortunately, mesh orthogonality is more an exception than a rule. In order to make
use of the higher accuracy of Eqn. (25), the product S•

(
∇φ

)
f

is split into two parts:

S•
(
∇φ

)
f

= ∆•
(
∇φ

)
f︸ ︷︷ ︸

orthogonal contribution

+ k•
(
∇φ

)
f︸ ︷︷ ︸

non-orthogonal correction

(28)

9By Gauss’ theorem ∫
VP
∇φ dV =

∮
∂V
φ dS

∇φVP =
∑

f

Sφ

∇φ =
1

VP

∑
f

Sφ

10Taking in account that to calculate gradient by 27 equation it is necessary to know all face values in cell P
and N, it implies interpolate this values using second neighbours.
According Eqn. 27 for gradient calculation is necessary to do sum in Eqn. 26 for cell N, this sum usesφ fPN , φ fNNn ,
φ fNNe , φ fNNs values. Last three of them requires second neighbours for its calculation, for example to calculate
φ fNNe , it is neccesary to use φN and φNe values.

P N

Nn

Ne

Ns

fPN fNNe

fNNs

fNNn

11

The two vectors introduced in Eqn. (28), ∆ and k, have got to satisfy the following
condition:

S = ∆ + k (29)

Vector ∆ is chosen to be parallel with d. This allows us to use Eqn. (25) on the orthogonal
contribution, limiting the less accurate method only to the non-orthogonal part which cannot
be treated in any other way.

Many possible decompositions exist and we will examine three:

• Minimum correction approach. The decomposition of S, Fig. 4, is done in such a way
to keep the non-orthogonal correction in Eqn. (28) as small as possible, by making ∆
and k orthogonal:

∆ =
d•S
d•d

d (30)

with k calculated from Eqn. (29). As the non-orthogonality increases, the contribution
from φP and φN decreases.

3.3 Discretisation of the Transport Equation 85

P Nf

d

S
k

∆

Figure 3.4: Nonorthogonality treatment in the “minimum correction” approach.

P Nf

d

S
k

∆

Figure 3.5: Nonorthogonality treatment in the “orthogonal correction” approach.

• Orthogonal correction approach. This approach keeps the contribution

from φP and φN the same as on the orthogonal mesh irrespective of the non

orthogonality, Fig. 3.5. To achieve this we define:

Δ =
d

|d|
|S|. (3.31)

• Overrelaxed approach. In this approach, the importance of the term in

P Nf

d

S k

∆

Figure 3.6: Nonorthogonality treatment in the “overrelaxed” approach.

Figure 4: Non-orthogonality treatment in the ’minimum correction’ approach

3.3 Discretisation of the Transport Equation 85

P Nf

d

S
k

∆

Figure 3.4: Nonorthogonality treatment in the “minimum correction” approach.

P Nf

d

S
k

∆

Figure 3.5: Nonorthogonality treatment in the “orthogonal correction” approach.

• Orthogonal correction approach. This approach keeps the contribution

from φP and φN the same as on the orthogonal mesh irrespective of the non

orthogonality, Fig. 3.5. To achieve this we define:

Δ =
d

|d|
|S|. (3.31)

• Overrelaxed approach. In this approach, the importance of the term in

P Nf

d

S k

∆

Figure 3.6: Nonorthogonality treatment in the “overrelaxed” approach.

Figure 5: Non-orthogonality treatment in the ’orthogonal correction’ approach

12

• Orthogonal correction approach. This approach keeps the contribution from φP and
φN the same as on the orthogonal mesh irrespective of the non-orthogonality, Fig. 5.
To achieve this we define:

∆ =
d
|d|
|S| (31)

• Over-relaxed approach. In this approach, the importance of the term in φP and φN is
caused to increase with the increase in non-orthogonality:

∆ =
d

d•S
|S|2 (32)

The decomposition of the face area vector is shown in Fig. 6.

3.3 Discretisation of the Transport Equation 85

P Nf

d

S
k

∆

Figure 3.4: Nonorthogonality treatment in the “minimum correction” approach.

P Nf

d

S
k

∆

Figure 3.5: Nonorthogonality treatment in the “orthogonal correction” approach.

• Orthogonal correction approach. This approach keeps the contribution

from φP and φN the same as on the orthogonal mesh irrespective of the non

orthogonality, Fig. 3.5. To achieve this we define:

Δ =
d

|d|
|S|. (3.31)

• Overrelaxed approach. In this approach, the importance of the term in

P Nf

d

S k

∆

Figure 3.6: Nonorthogonality treatment in the “overrelaxed” approach.

Figure 6: Non-orthogonality treatment in the ’over-relaxed’ approach

The diffusion term, Eqn. (24), in its differential form exhibits the bounded behaviour. Its
discretised form will preserve this property only on orthogonal meshes. The non-orthogonal
correction potentially creates unboundedness, particularly if mesh non-orthogonality is high.
If the preservation of boundedness is more important than accuracy, the non-orthogonal cor-
rection has got to be limited or completely discarded, thus violating the order of accuracy of
the discretisation [. . .]11.

All of the approaches described above are valid – Eqn. (29) is satisfied for all of them.
The difference occurs in their accuracy and stability on non-orthogonal meshes [. . .]12.

The final form of the discretised diffusion term is the same for all three approaches. The
orthogonal part of Eqn. (28) is discretised in the following way: since d and ∆ are parallel,
it follows that:

∆•
(
∇φ

)
f

= |∆|
φN − φP

|d|
(33)

and Eqn. (28) can be written as:

S•
(
∇φ

)
f

= |∆|
φN − φP

|d|
+ k•

(
∇φ

)
f

(34)

11See Jasak’s thesis section 3.6
12See Jasak’s thesis Sections 3.6 and 3.7.4.

13

The face interpolate of ∇φ is calculated using Eqn. (27)13

Source Terms All terms of the original equation that cannot be written as convection, dif-
fusion or temporal terms are treated as sources. The source term, Sφ

(
φ
)
, can be a general

function of φ. When deciding on the form of the discretisation for the source, its interaction
with other terms in the equation and its influence on boundedness and accuracy should be
examined. Some general comments on the treatment of source terms are given in Patankar
[7]. A simple procedure will be explained here.

Before the actual discretisation, the source term needs to be linearised:

Sφ
(
φ
)

= Su + Spφ (36)

where Su and Sp can also depend on φ. Following Eqn. (3.12), the volume integral is
calculated as: ∫

VP

Sφ
(
φ
)

dV = Su VP + Sp VP φP (37)

The importance of the linearisation becomes clear in implicit calculations. It is advisable
to treat the source term as ’implicitly’ as possible. This will be further explained in Section
2.1.7.

2.1.5 Temporal Discretisation

In the previous Section, the discretisation of spatial terms has been presented. This can be
split into two parts – the transformation of surface and volume integrals into discrete sums
and expressions that give the face values of the variable as a function of cell values. Let us
again consider the integral form of the transport equation, Eqn. (8):

∫ t+∆t

t

[
∂
∂t

∫
VP

ρφ dV +

∫
VP

∇•
(
ρUφ

)
dV −

∫
VP

∇•
(
ρΓφ∇φ

)
dV

]
dt

=

∫ t+∆t

t

(∫
VP

Sφ
(
φ
)

dV
)

dt

Using Eqs. (17, 34 and 37), and assuming that the control volumes do notchange in time,
Eqn. (8) cn be written as:

∫ t+∆t

t

(
∂ρφ

∂t

)
P

VP +
∑

f

Fφ f −

∑
f

(
ρΓφ

)
f
S•

(
∇φ

)
f

 dt

=

∫ t+∆t

t

(
Su VP + Sp VP φP

)
dt (38)

13As is explained later (see Section 2.1.7) the face interpolate
(
∇φ

)
f

is calculated explicitely by φ values at
previous time. Using Rusche’s Thesis notation [see [12] Eq. (2.28)] Eq. (34) reads:

S•
(
∇φ

)
f

= |∆|
φN − φP

|d|
+ k•

(
∇φ0

)
f

(35)

14

The above expression is usually called the ’semi-discretised’ form of the transport equa-
tion ([6]).

Having in mind the prescribed variation of the function in time, Eqn. (4), the temporal
integrals and the time derivative can be calculated directly as:(

∂ρφ

∂t

)
P

=
ρn

Pφ
n
P − ρ

0
Pφ

0
P

∆t
(39)

∫ t+∆t

t
φ (t) =

1
2

(
φ0 + φn

)
∆t (40)

where

φn = φ (t + ∆t)

φ0 = φ (t) (41)

Assuming that the density and diffusivity do not change in time, Eqs. (38, 39 and 40)
give:

ρPφn
P − ρPφ0

P

∆t
VP +

1
2

∑
f

Fφn
f −

1
2

(
ρΓφ

)
f
S•

(
∇φ

)n

f

+
1
2

∑
f

Fφ0
f −

1
2

(
ρΓφ

)
f
S•

(
∇φ

)0

f

= Su Vp +
1
2

Sp Vpφn
P +

1
2

Sp Vpφ0
P (42)

This form of temporal discretisation is called the Crank-Nicholson method. It is second-
order accurate in time. It requires the face values of φ and ∇φ as well as the cell values for
both old and new time-level. The face values are calculated from the cell values on each side
of the face, using the appropriate differencing scheme for the convection term, and Eqn. (34)
for diffusion. The evaluation of the non-orthogonal correction term will be discussed later
(see Section 2.1.7). Our task is to determine the new value of φP. Since φ f and

(
∇φ

)
f

also
depend on values of φ in the surrounding cells, Eqn. (42) produces an algebraic equation:

aPφ
n
P +

∑
N

aNφ
n
N = RP (43)

For every control volume, one equation of this form is assembled. The value ofφn
P depends

on the values in the neighbouring cells, thus creating a system of algebraic equations:

[A]
[
φ
]

= [R] (44)

where [A] is a sparse matrix, with coefficients aP on the diagonal and aN off the diagonal,[
φ
]

is the vector of φ-s for all control volumes and [R] is the source term vector. The sparse-
ness pattern of the matrix depends on the order in which the control volumes are labelled,
with every off-diagonal coefficient above and below the diagonal corresponding to one of
the faces in the mesh. In the rest of this study, Eqn. (44) will be represented by the typical

15

equation for the control volume, Eqn. (43).

When this system is solved, it gives a new set of φ values – the solution for the new time-
step. As will be shown later, the coefficient aP in Eqn. (43) includes the contribution from all
terms corresponding to φn – the temporal derivative, convection and diffusion terms as well
as the linear part of the source term. The coefficients aN include the corresponding terms
for each of the neighbouring points. The summation is done over all CV-s that share a face
with the current control volume. The source term includes all terms that can be evaluated
without knowing the new φ’s, namely, the constant part of the source term, and the parts of
the temporal derivative, convection and diffusion terms corresponding to the old time-level.

The Crank-Nicholson method of temporal discretisation is unconditionally stable ([6]),
but does not guarantee boundedness of the solution. Examples of unrealistic solutions given
by the Crank-Nicholson scheme can be found in Patankar and Baliga [See [5] ref. 106]. As in
the case of the convection term, boundedness can be obtained if the equation is discretised
to first order temporal accuracy.

It has been customary to neglect the variation of the face values of φ and ∇φ in time ([7]).
This leads to several methods of temporal discretisation. The new form of the discretised
transport equation combines the old and new time-level convection, diffusion and source
terms, leaving the temporal derivative unchanged:

ρPφn
P − ρPφ0

P

∆t
VP +

∑
f

Fφ f −

∑
f

(
ρΓφ

)
f
S•

(
∇φ

)
f

= Su VP + Sp VP φP (45)

The resulting equation is only first-order accurate in time and a choice has to be made
about the way the face values of φ and ∇φ are evaluated.

In explicit discretisation, the face values of φ and ∇φ are determined from the old
time-field:

φ f = fxφ
0
P +

(
1 − fx

)
φ0

N (46)

S•
(
∇φ

)
f

= |∆|
φ0

N − φ
0
P

|d|
+ k•

(
∇φ

)0

f
(47)

The linear part of the source term is also evaluated using the old-time value. Eqn. (45)
can be written in the form:

φn
P = φ0

P +
∆t
ρP VP

∑
f

Fφ f −

∑
f

(
ρΓφ

)
f
S•

(
∇φ

)
f
+ Su VP + Sp VPφ

0
P

 (48)

The consequence of this choice is that all terms on the r.h.s. of Eqn. (48) depend only on
the old-time field. The new value of φP can be calculated directly – it is no longer necessary
to solve the system of linear equations. The drawback of this method is the Courant number
limit (Courant et al. [See [5] ref. 32]). The Courant number is defined as:

Co =
U f •d
∆t

(49)

16

If the Courant number is larger than unity, the explicit system becomes unstable. This is
a severe limitation, especially if we are trying to solve a steady-state problem.

The Euler Implicit method expresses the face-values in terms of the new time-level cell
values:

φ f = fxφ
n
P +

(
1 − fx

)
φn

N (50)

S•
(
∇φ

)
f

= |∆|
φn

N − φ
n
P

|d|
+ k•

(
∇φ

)
f

(51)

This is still only first order accurate but, unlike the explicit method, it creates an system
of equations like Eqn. (43). The coupling in the system is much stronger than in the explicit
approach and the system is stable even if the Courant number limit is violated ([6]). Unlike
the explicit method, this form of temporal discretisation guarantees boundedness.

Backward Differencing in time is a temporal scheme which is second-order accurate in
time and still neglects the temporal variation of the face values. In orderto achieve this, each
individual term of Eqn. (38) needs to be discretised to second order accuracy.

The discretised form of the temporal derivative in Eqn. (45) can be obtained in the
following way: consider the Taylor series expansion of φ in time around φ (t + ∆t) = φn:

φ (t) = φ0 = φn
−
∂φ

∂t
∆t +

1
2
∂2φ

∂t2 + o
(
∆t3

)
(52)

The temporal derivative can therefore be expressed as:

∂φ

∂t
=
φn
− φ0

∆t
+

1
2
∂2φ

∂t2 ∆t + o
(
∆t2

)
(53)

In spite of the prescribed linear variation of φ in time, Eqn. (39) approximates the tempo-
ral derivative only to first order accuracy, since the first term of the truncation error in Eqn.
(53) scales with ∆t. However, if the temporal derivative is discretised up to second order,
the whole discretisation of the transport equation will be second-order accurate even if the
temporal variation of φ f and

(
∇φ

)
f

is neglected.

In order to achieve this, the Backward Differencing in time uses three time levels. The
additional Taylor series expansion for the ’second old’ time level is:

φ (t − ∆t) = φ00 = φn
− 2

δφ

δt
∆t + 2

δ2φ

δt
∆t2 + o

(
∆r3

)
(54)

It is now possible to eliminate the term in the truncation error which scales with ∆t.
Combining Eqs. (52 and 54) the second-order approximation of the temporalderivative is:

∂φ

∂t
=

3
2 − 2φ0 + 1

2φ
00

∆t
(55)

Again, the boundedness of the solution cannot be guaranteed [. . .]14. The final form of
the discretised equation with Backward Differencing in time is:

14For a comparison between the Backward Differencing and the Crank-Nicholson method see Jasak’s thesis
Section 3.6

17

3
2ρPφn

− 2ρPφ0 + 1
2ρPφ00

∆t
VP +

∑
f

Fφn
f −

∑
f

(
ρΓφ

)
S•

(
∇φ

)n

f

= Su VP + Sp VP φ
n
P (56)

This produces a system of algebraic equations that must be solved for φP
n .

Steady-state problems are quite common in fluid flows. Their characteristic is that the
solution is not a function of time, i.e. the transport equation reduces to:

∇•
(
ρ∇φ

)
− ∇•

(
ρΓφ∇φ

)
= Su + Spφ (57)

If we are solving a single equation of this type, the solution can be obtained in a single step.
This is generally not the case: fluid flow problems require a solution of non-linear systems
of coupled equations. If the non-linearity of the system is lagged, which is the case in the
segregated approach used in this study, it is still necessary to solve the system in an iterative
manner. In order to speed up the convergence, an implicit formulation is preferred. The
convergence of the iterative procedure can be improved through under-relaxation, which
will be described in Section 2.1.7

2.1.6 Implementation of Boundary Conditions

Let us now consider the implementation of boundary conditions. The computational mesh
includes a series of faces which coincide with the boundaries of the physical domain under
consideration. The conditions there are prescribed through the boundary conditions.

In order to simplify the discussion, the boundary conditions are divided into numerical
and physical boundary conditions.

There are two basic types of numerical boundary conditions. Dirichlet (or fixed value)
boundary condition prescribes the value of the variable on the boundary. Von Neumann
boundary condition, on the other hand, prescribes the gradient of the variable normal to the
boundary. These two types of boundary conditions can be built into the system of algebraic
equations, Eqn. (43), before the solution.

Physical boundary conditions are symmetry planes, walls, inlet and outlet conditions for
fluid flow problems, adiabatic or fixed temperature boundaries for heat transfer problems
etc. Each of these conditions is associated with a set of numerical boundary conditions on
each of the variables that is being calculated. Some more complicated boundary conditions
(radiation boundaries, for example) may specify the interaction between the boundary value
and the gradient on the boundary.

Numerical Boundary Conditions Before we consider the implementation of numerical
boundary conditions, we have to address the treatment of non-orthogonality on the bound-
ary. Consider a control volume with a boundary face b, shown in Fig. 7. In this situation,
the vector d extends only to the centre of the boundary face.

It is assumed that a boundary condition specified for the boundary face is valid along
the whole of the face. The decomposition of the face area vector into the orthogonal and

18

3.3 Discretisation of the Transport Equation 93

Physical boundary conditions are symmetry planes, walls, inlet and outlet con

ditions for fluid flow problems, adiabatic or fixed temperature boundaries for heat

transfer problems etc.. Each of these conditions is associated with a set of numerical

boundary conditions on each of the variables that is being calculated. Some more

complicated boundary conditions (radiation boundaries, for example) may specify

the interaction between the boundary value and the gradient on the boundary.

3.3.3.1 Numerical Boundary Conditions

Before we consider the implementation of numerical boundary conditions, we have

to address the treatment of nonorthogonality on the boundary. Consider a control

volume with a boundary face b, shown in Fig. 3.7. In this situation, the vector d

P

d

S

b

∆

k

d

n

Figure 3.7: Control volume with a boundary face.

extends only to the centre of the boundary face.

It is assumed that a boundary condition specified for the boundary face is valid

along the whole of the face. The decomposition of the face area vector into the

orthogonal and nonorthogonal part is now simple: the vector k in Fig. 3.7 is parallel

to the face. The orthogonal part of the face area vector (∆ in Fig. 3.7) is therefore

equal to S, but is no longer located in the middle of the face.

The vector between the cell centre and the boundary face is now normal to the

Figure 7: Control volume with a boundary face

non-orthogonal part is now simple: the vector k in 7 is parallel to the face. The orthogonal
part of the face area vector (∆ in Fig. 7) is therefore equal to S, but is no longer located in the
middle of the face.

The vector between the cell centre and the boundary face is now normal to the boundary:

dn =
S
|S|

d•S
|S|

(58)

and the correction vector k is not used.

• Fixed Value Boundary Condition

The fixed value boundary condition prescribes the value of φ at the face b to be φb .
This has to be taken into account in the discretisation of the convection and diffusion
terms on the boundary face.

Convection term. According to Eqn. (17), the convection term is discretised as:

∫
VP

∇•
(
ρUφ

)
dV =

∑
f

Fφ f (59)

It is known that the value of φ on the boundary face is φb. Therefore, the term for the
boundary face is:

Fb φb (60)

wher Fb is the face flux.

Diffusion term. The diffusion term is discretised according to Eqn.(24).

∫
VP

∇•
(
ρΓφ∇φ

)
dV =

∑
f

(
ρΓφ

)
f
S•

(
∇φ

)
f

(61)

19

The face gradient at b is calculated from the known face value and the cell centre value:

S•
(
∇φ

)
b

= |S|
φb − φP

|dn|
(62)

because S and dn are parallel.

• Fixed Gradient Boundary Condition

In the case of the fixed gradient boundary condition, the dot-product of the gradient
and the outward pointing unit normal is prescribed on the boundary:(S

|S|
•∇φ

)
b

= gb (63)

Convection term. The face value of φ is calculated from the value in the cell centre
and the prescribed gradient:

φb = φP + dn•
(
∇φ

)
= φP + |dn| gb (64)

Diffusion term. The dot product between the face area vector and
(
∇φ

)
b

is known
to be

|S| gb (65)

and the resulting term (
ρΓφ

)
b
|S| gb (66)

As the vector dn does not point to the middle of the boundary face, the face integrals in
the fixed gradient boundary condition are calculated only to first order accuracy. This
can be rectified by including the boundary face correction based on the vector k (Fig.
7) and the component of the gradient parallel to the face in the first cell next to the
boundary. [. . .]15.

Physical Boundary Conditions Let us now consider some physical boundary conditions
for fluid flow calculations. For simplicity, we shall start with the incompressible flow.

• Inlet boundary. The velocity field at the inlet is prescribed and, for consistency, the
boundary condition on pressure is zero gradient ([6]).

• Outlet boundary. The outlet boundary condition should be specified in such a way
that the overall mass balance for the computational domain is satisfied.

This can be done in two ways:

15However, an of the same type is neglected for the internal faces of the mesh and this correction is omitted
for the sake of consistency, see Jasak’s thesis Section 3.6

20

The velocity distribution for the boundary is projected from the inside of the domain
(first row of cells next to the boundary). These velocities are scaled to satisfy overall
continuity. This approach, however, leads to instability if inflow through a boundary
specified as outlet occurs. The boundary condition on pressure is again zero gradient.

The other approach does not require the velocity distribution across the outlet – the
pressure distribution is specified instead. The fixed value boundary condition is used
for the pressure, with the zero gradient boundary condition on velocity. Overall mass
conservation is guaranteed by the pressure equation [. . .]16.

• Symmetry plane boundary. The symmetry plane boundary condition implies that
the component of the gradient normal to the boundary should be fixed to zero. The
components parallel to it are projected to the boundary face from the inside of the
domain.

• Impermeable no-slip walls. The velocity of the fluid on the wall is equal to that of
the wall itself, so the fixed value boundary conditions prevail. As the flux through the
solid wall is known to be zero, the pressure gradient condition is zero gradient.

Compressible flows at low Mach numbers are subject to the same approach as above.
The situation is somewhat more complex in case of transonic and supersonic flows – the
number of boundary conditions fixed at the inlet and outlet depends on the number of char-
acteristics pointing into the domain. For these cases the reader is referred to [6] or [5] ref. 135.

For turbulent flows, the inlet and outlet boundary conditions on turbulence variables (k
and , ε for example) are typically assigned to fixed values and zero gradients, respectively.
The boundary conditions for the turbulence properties on the wall depend on the form of
the selected turbulence model and the near-wall treatment.

2.1.7 Solution Techniques for Systems of Linear Algebraic Equations

Let us again consider the system of algebraic equations created by the discretisation, Eqn.
(43):

aPφ
n
P +

∑
N

aNφ
n
N = RP

This system can be solved in several different ways. Existing solution algorithms fall into
two main categories: direct and iterative methods. Direct methods give the solution of the
system of algebraic equations in a finite number of arithmetic operations. Iterative methods
start with an initial guess and then continue to improve the current approximation of the so-
lution until some ’solution tolerance’ is met. While direct methods are appropriate for small
systems, the number of operations necessary to reach the solution raises with the number
of equations squared, making them prohibitively expensive for large systems (See [[5] ref.
97]). Iterative methods are more economical, but they usually pose some requirements on
the matrix.

The matrix resulting from Eqn. (43) is sparse – most of the matrix coefficients are equal to
zero. If it were possible to choose a solver which preserves the sparsity pattern of the matrix,
the computer memory requirements would be significantly decreased. Unlike direct solvers,
some iterative methods preserve the sparseness of the original matrix. These properties

16See Section 2.1.8

21

make the use of iterative solvers very attractive.

Iterative solvers require diagonal dominance in order to guarantee convergence. A ma-
trix is said to be diagonally equal if the magnitude of the diagonal (central) coefficient is
equal to the sum of magnitudes of off-diagonal coefficients. The additional condition for
diagonal dominance is that |aP| > |aN| for at least one row of the matrix.

In order to improve the solver convergence, it is desirable to increase the diagonal domi-
nance of the system. Discretisation of the linear part of the source term, Eqn. (37), is closely
related to this issue. If Sp < 0, its contribution increases diagonal dominance and Sp is
included into the diagonal. In the case of Sp > 0, diagonal dominance would be decreased.
It is more effective to include this term into the source and update it when the new solution
is available. This measure is, however, not sufficient to guarantee the diagonal dominance
of the matrix.

The analysis of the structure of the matrix brings us back to the issue of boundedness.
The sufficient boundedness criterion for systems of algebraic equations mentioned in Sec-
tion 2.1.4 states that the boundedness of the solution will be preserved for diagonally equal
systems of equations with positive coefficients. This allows us to examine the discretised
form of all the terms in the transport equation from the point of view of boundedness and
diagonal dominance and identify the troublesome parts of discretisation.

The convection term creates a diagonally equal matrix only for Upwind Differencing.
Any other differencing scheme will create negative coefficients, violate the diagonal equality
and potentially create unbounded solution. In the case of Central Differencing on a uniform
mesh, the problem is further complicated by the fact that the central coefficient is equal to
zero. In order to improve the quality of the matrix for higher-order differencing schemes,
Khosla and Rubin (See [[5] ref. 73]) propose a deferred correction implementation for the
convection term. Here, any differencing scheme is treated as an upgrade of UD. The part of
the convection term corresponding to UD is treated implicitly (i.e. built into the matrix)
and the other part is added into the source term. This, however, does not affect the bound-
edness in spite of the fact that the matrix is now diagonally equal, as the ’troublesome’ part
of the discretisation still exists in the source term.

The diffusion term creates a diagonally equal matrix only if the mesh is orthogonal. On
non-orthogonal meshes, the second term in Eqn. (34) introduces the ’second neighbours’ of
the control volume into the computational molecule with negative coefficients, thus violat-
ing diagonal equality. As a consequence of mesh non-orthogonality, the boundedness of the
solution cannot be guaranteed. The increase in the computational molecule would result
in a higher number of non-zero matrix coefficients, implying a considerable increase in the
computational effort re-quired to solve the system. On the other hand, the non-orthogonal
correction is usually small compared to the implicit part of the diffusion term. It is therefore
reasonable to treat it through the source term. In this study, the diffusion term will therefore be
split into the implicit orthogonal contribution, which includes only the first neighbours of the cell
and creates a diagonally equal matrix and the non-orthogonal correction, which will be added to the
source. If it is important to resolve the non-orthogonal parts of the diffusion operators (like
in the case of the pressure equation, see 2.1.8), non-orthogonal correctors are included. The
system of algebraic equations, Eqn. (43), will be solved several times. Each new solution will
be used to update the non-orthogonal correction terms, until the desired tolerance is met.

22

It should again be noted that this practice only improves the quality of the matrix but does
not guarantee boundedness. If boundedness is essential, the non-orthogonal contribution
should be discarded, thus creating a discretisation error [. . .]17.

At this point, the difference between the non-orthogonality treatments proposed in Sec-
tion [Diffusion Term] becomes apparent. The decomposition of the face area vector into the
orthogonal and non-orthogonal part determines the split between the implicit and explicit
part of the term, with the consequences on the accuracy and convergence of non-orthogonal
correctors. The comparison of different treatments is based on several criteria:

• On which angle of non-orthogonality is it necessary to introduce non-orthogonal cor-
rectors – how good an approximation of the converged solution can be obtained after
only one solution of the system?

• How many non-orthogonal correctors are needed to meet a certain tolerance?

• How does the number of solver iterations change with the number of correctors?

• If the non-orthogonal correction needs to be discarded for the sake of boundedness,
which approach causes the smallest discretisation error?18

[. . .]
The discretisation of the temporal derivative creates only the diagonal coefficient and

a source term contribution, thus increasing the diagonal dominance. Unfortunately, the
sufficient boundedness criterion cannot be used to establish the boundedness of the discreti-
sation, as it does not take into account the influence of the source term.

The above discussion concentrates on the analysis of the discretisation on a term-by-term
basis. In reality, all of the above coefficients contribute to the matrix, thus influencing the
properties of the system. It has been shown that the only terms that actually enhance the
diagonal dominance are the linear part of the source and the temporal derivative.

In steady-state calculations, the beneficial influence of the temporal derivative on the
diagonal dominance does not exist. In order to enable the use iterative solvers, the diagonal
dominance needs to be enhanced in some other way, namely through under-relaxation.
Consider the original system of equations, Eqn. (43):

aPφ
n
P +

∑
N

aNφ
n
N = RP

Diagonal dominance is created through an artificial term added to both left and right-
hand side of Eqn. (43):

aPφ
n
P +

1 − α
α

aPφ
n
P +

∑
N

aNφ
n
N = RP +

1 − α
α

aPφ
0
P (67)

or

aP

α
φn

P +
∑

N

aNα
n
N = RP +

1 − α
α

aPφ
0
P (68)

17See Jasak’s thesis Section 3.6.
18The discretisation error for the diffusion term is be derived in Jasak’s thesis Section 3.6. For numerical

results for the convergence of three non-orthogonality see Section 3.7.of same work

23

Here, φ0
P here represents the value of φ from the previous iteration and α is the under-

relaxation factor (0 < α ≤ 1). Additional terms cancel out when steady-state is reached(
φn

P = φ0
P

)
.

In this study, the iterative solution procedure used to solve the system of algebraic
equations is the Conjugate Gradient (CG) method, originally proposed by Hestens and
Steifel ([See [5] ref. 63]). It guarantees that the exact solution will be obtained in the number
of iterations smaller or equal to the number of equations in the system. The convergence rate
of the solver depends on the dispersion of the eigenvalues of the matrix [A] in Eqn. (44) and
and can be improved through pre-conditioning. For symmetric matrices, the Incomplete
Cholesky preconditioned Conjugate Gradient (ICCG) solver will be used. The method is
described in detail by Jacobs, ([See [5] ref. 67]). The adopted solver for asymmetric matrices
is the Bi-CGSTAB by van der Vorst ([See [5] ref. 136]).

2.1.8 Discretisation Procedure for the Navier-Stokes System

In this Section, a discretisation procedure for the Navier-Stokes equations will be presented.
We shall start with the incompressible form of the system [given by the continuity equation
and the Navier-Stokes equations]:

∇•U = 0 (69)
∂U
∂t

+ ∇• (UU) − ∇• (ν∇U) = −∇p (70)

Two issues require special attention: non-linearity of the momentum equation and the
pressure-velocity coupling.

The non-linear term in Eqn. (70) is ∇• (UU), i.e. velocity is ’being transported by itself’.
The discretised form of this expression would be quadratic in velocity and the resulting
system of algebraic equations would therefore be non-linear. There are two possible solutions
for this problem – either use a solver for non-linear systems, or linearise the convection term.
Section 2.1.4 describes the discretisation of this term:

∇• (UU) =
∑

f

S• (U) f (U) f

=
∑

f

F (U) f

= aPUP +
∑

f

aNUN

where F, aP and aN are a function of U. The important issue is that the fluxes F should
satisfy the continuity equation, [first equation in 70]. Eqs. (70) should therefore be solved
together, resulting in an even larger (non-linear) system. Having in mind the complexity of
non-linear equation solvers and the computational effort required, linearisation of the term
is preferred. Linearisation of the convection term implies that an existing velocity (flux) field
that satisfies [continuity] will be used to calculate aP and aN.

The linearisation does not have any effect in steady-state calculations. When the steady-
state is reached, the fact that a part of the non-linear term has been lagged is not significant.

24

In transient flows two different approaches can be adopted: either to iterate over non-linear
terms or to neglect the lagged non-linearity effects. Iteration can significantly increase the
computational cost, but only if the time-step is large. The advantage is that the non-linear
system is fully resolved for every time-step, whose size limitation comes only from the tem-
poral accuracy requirements. If it is necessary to resolve the temporal behaviour well, a
small time-step is needed. On the other hand, if the time-step is small, the change between
consecutive solutions will also be small and it is therefore possible to lag the non-linearity
without any significant effect. In this study, the PISO procedure proposed by Issa (See [[5]
ref. 66]) is used for pressure-velocity coupling in transient calculations. For steady-state
calculations, a SIMPLE pressure-velocity coupling procedure by Patankar [7] is used.

In Section 2.1.9 the problem of pressure-velocity coupling is presented. The pressure
equation is derived for the incompressible Navier-Stokes system. Generalisation to com-
pressible and transonic flows can be found in e.g. Demirdzic et al. [[5] ref. 39]. Section
2.1.10 describes the pressure-velocity coupling algorithms. Finally, in Section 2.1.11, a so-
lution procedure for incompressible Navier-Stokes equations with a turbulence model is
presented.

2.1.9 Derivation of the Pressure Equation

In order to derive the pressure equation, a semi-discretised form of the momentum equation
will be used:

aPUP = H (U) − ∇p (71)

In the spirit of the Rhie and Chow procedure [[5] ref. 117, [8]], the pressure gradient term
is not discretised at this stage. Eqn. (71) is obtained from the integral form of the momentum
equation, using the discretisation procedure described previously. It has been consequently
divided through by the volume in order to enable face interpolation of the coefficients.

The H (U) term consists of two parts: the ’transport part’, including the matrix coefficients
for all neighbours multiplied by corresponding velocities and the ’source part’ including the
source part of the transient term and all other source terms apart from the pressure gradient
(in our case, there are no additional source terms):

H (U) = −
∑

f

aNU +
U0

∆t
(72)

The discretised form of the continuity equation is:

∇•U =
∑

f

S•U f = 0 (73)

Eqn. (71) is used to express U:

UP =
H (U)

aP
−

1
aP
∇p (74)

Velocities on the cell face are expressed as the face interpolate of Eqn. (74):

U f =

(
H (U)

aP

)
f
−

(1
aP

) (
∇p

)
f (75)

25

This will be used later to calculate the face fluxes.

When Eqn. (75) is substituted into Eqn. (73), the following form of the pressure equation
is obtained:

∇•

(1
aP
∇p

)
= ∇•

(
H (U)

aP

)
=

∑
f

S
(

H (U)
aP

)
f

(76)

The Laplacian on the l.h.s. of Eqn. (76) is discretised in the standard way (see Section
2.1.4).

The final form of the discretised incompressible Navier-Stokes system is:

aPUP = H (U) −
∑

f

S
(
p
)

f (77)

∑
f

S•
[(1

aP

)
f

(
∇p

)
f

]
=

∑
f

S
(

H (U)
aP

)
f

(78)

The face flux F is calculated using Eqn. (75):

F = S•U f = S•
(H (U)

aP

)
f
−

(1
aP

)
f

(
∇p

)
f

 (79)

When Eqn. (76) is satisfied, the face fluxes are guaranteed to be conservative.

2.1.10 Pressure-Velocity Coupling

Consider the discretised form of the Navier-Stokes system, Eqs. (77 and 78). The form of
the equations shows linear dependence of velocity on pressure and vice-versa. This inter-
equation coupling requires a special treatment.

[[5] ref. 117]
Simultaneous algorithms (Caretto et al. [[5] ref. 23], Vanka [[5] ref. 143]) operate by

solving the complete system of equations simultaneously over the whole domain. Such
a procedure might be considered when the number of computational points is small and
the number of simultaneous equations is not too large. The resulting matrix includes the
inter-equation coupling and is several times larger than the number of computational points.
The cost of a simultaneous solution is great, both in the number of operations and memory
requirements.

In the segregated approach (e.g. Patankar [7], Issa [[5] ref. 66]) the equations are solved in
sequence. A special treatment is required in order to establish the necessary inter-equation
coupling. PISO [[5] ref. 66], SIMPLE [7] and their derivatives are the most popular methods
of dealing with inter-equation coupling in the pressure-velocity system.

26

The PISO Algorithm for Transient Flows This pressure-velocity treatment for transient
flow calculations has been originally proposed by Issa [[5] ref. 66]. Let us again consider
the discretised Navier-Stokes system for incompressible flow, Eqs. (77 and 78). The PISO
algorithm can be described as follows:

• The momentum equation is solved first. The exact pressure gradient source term is not
known at this stage – the pressure field from the previous time-step is used instead.
This stage is called the momentum predictor. The solution of the momentum equation,
Eqn. (77), gives an approximation of the new velocity field.

• Using the predicted velocities, the H (U) operator can be assembled and the pressure
equation can be formulated. The solution of the pressure equation gives the first
estimate of the new pressure field. This step is called the pressure solution.

• Eqn. (79) gives a set of conservative fluxes consistent with the new pressure field. The
velocity field should also be corrected as a consequence of the new pressure distribution.
Velocity correction is done in an explicit manner, using Eqn. (74). This is the explicit
velocity correction stage.

A closer look to Eqn. (74) reveals that the velocity correction actually consists of two parts
– a correction due to the change in the pressure gradient (1

aP
∇p term) and the transported

influence of corrections of neighbouring velocities (H(U)
aP

term). The fact that the velocity
correction is explicit means that the latter part is neglected – it is effectively assumed that
the whole velocity error comes from the error in the pressure term. This, of course, is not
true. It is therefore necessary to correct the H (U) term, formulate the new pressure equation
and repeat the procedure. In other words, the PISO loop consists of an implicit momentum
predictor followed by a series of pressure solutions and explicit velocity corrections. The
loop is repeated until a pre-determined tolerance is reached.

Another issue is the dependence of H (U) coefficients on the flux field. After each pressure
solution, a new set of conservative fluxes is available. It would be therefore possible to
recalculate the coefficients in H (U). This, however, is not done: it is assumed that the non-
linear coupling is less important than the pressure-velocity coupling, consistent with the
linearisation of the momentum equation. The coefficients in H (U) are therefore kept constant
through the whole correction sequence and will be changed only in the next momentum
predictor.

The SIMPLE Algorithm If a steady-state problem is being solved iteratively, it is not
necessary to fully resolve the linear pressure-velocity coupling, as the changes between con-
secutive solutions are no longer small. Non-linearity of the system becomes more important,
since the effective time-step is much larger.

The SIMPLE algorithm by Patankar [7] is formulated to take advantage of these facts:

• An approximation of the velocity field is obtained by solving the momentum equation.
The pressure gradient term is calculated using the pressure distribution from the pre-
vious iteration or an initial guess. The equation is under-relaxed in an implicit manner
(see Eqn. 68), with the velocity under-relaxation factor αU.

• The pressure equation is formulated and solved in order to obtain the new pressure
distribution.

27

• A new set of conservative fluxes is calculated using Eqn. (79). As it has been noticed
before, the new pressure field includes both the pressure error and convection-diffusion
error. In order to obtain a better approximation of the ’correct’ pressure field, it would
be necessary to solve the pressure equation again. On the other hand, the non-linear
effects are more important than in the case of transient calculations. It is enough to
obtain an approximation of the pressure field and recalculate the H (U) coefficients with
the new set of conservative fluxes. The pressure solution is therefore under-relaxed in
order to take into account the velocity part of the error:

pnew = pold + αp

(
pp
− pold

)
(80)

where

pnew is the approximation of the pressure field that will be used in the next momen-
tum predictor,

pold is the pressure field used in the momentum predictor,

pp is the solution of the pressure equation,

αp is the pressure under-relaxation factor,
(
0 < αp ≤ 1

)
.

If the velocities are needed before the next momentum solution, the explicit velocity cor-
rection, Eqn. (74), is performed.

Peric, [[5] ref. 109] gives an analysis of the under-relaxation procedure based on the
expected behaviour of the second corrector in the PISO sequence. The recommended values
of under-relaxation factors are (Peric, [[5] ref. 109]):

• αp = 0.2 for the pressure and

• αU = 0.8 for momentum.

2.1.11 Solution Procedure for the Navier-Stokes System

It is now possible to describe the solution sequence for the Navier-Stokes system with addi-
tional coupled transport equations (e.g. a turbulence model, combustion equations, energy
equation or some other equations that influence the system).

In transient calculations, all inter-equation couplings apart from the pressure-velocity
system are lagged. If it is necessary to ensure a closer coupling between some of the
equations (e.g. energy and pressure in combustion), they are included in the PISO loop.
A transient solution procedure for incompressible turbulent flows can be summarised as
follows:

1. Set up the initial conditions for all field values.

2. Start the calculation of the new time-step values.

3. Assemble and solve the momentum predictor equation with the available face fluxes.

4. Go through the PISO loop until the tolerance for pressure-velocity system is reached.
At this stage, pressure and velocity fields for the current time-step are obtained, as well
as the new set of conservative fluxes.

28

5. Using the conservative fluxes, solve all other equations in the system. If the flow is
turbulent, calculate the effective viscosity from the turbulence variables.

6. If the final time is not reached, return to step 2.

The solution procedure for steady-state incompressible turbulent flow is similar:

1. Set all field values to some initial guess.

2. Assemble and solve the under-relaxed momentum predictor equation.

3. Solve the pressure equation and calculate the conservative fluxes. Update the pressure
field with an appropriate under-relaxation. Perform the explicit velocity correction
using Eqn. (74)

4. Solve the other equations in the system using the available fluxes, pressure and velocity
fields. In order to improve convergence, under-relax the other equations in an implicit
manner, as shown in Eqn. (68).

5. Check the convergence criterion for all equations. If the system is not converged, start
a new iteration on step 2.”

2.1.12 An alternative derivation of the Pressure Equation

In order to provide more clarity in the derivation of pressure equation following is a new
approach on this topic introduced by Prof. Jasak in his Lecture Notes for the University of
Zagreb[9]. This is based on the Schur Complement concept.

”Consider a general block matrix system M, consisting of 4 block matrices, A, B, C, and
D, which are respectively p × p, p × q, q × p and q × q matrices and A is invertible:[

A B
C D

]
(81)

This structure will arise naturally when trying to solve a block system of equations

A x + B y = a
C x + D y = b (82)

The Schur complement arises when trying to eliminate x from the system using partial
Gaussian elimination by multiplying the first row with A?1:

A−1Ax + A−1By = A−1a (83)

and

x = A−1a − A−1By (84)

Substituting the above into the second row:(
D − CA−1B

)
y = b − CA−1a (85)

29

Let us repeat the same set of operations on the block form of the pressure-velocity system,
attempting to assemble a pressure equation. Note that the operators in the block system could
be considered both as differential operators and in a discretised form[

[Au] [∇(.)]
[∇•(.)] [0]

] [
u
p

]
=

[
0
0

]
(86)

Formally, this leads to the following form of the pressure equation:

[∇•(.)]
[
A−1

u

]
[∇(.)]

[
p
]

= 0 (87)

Here, A−1
u represent the inverse of the momentum matrix in the discretised form, which

acts as diffusivity in the Laplace equation for the pressure.

From the above, it is clear that the governing equation for the pressure is a Laplacian, with
the momentum matrix acting as a diffusion coefficient. However, the form of the operator is
very inconvenient:

• While [Au] is a sparse matrix, its inverse is likely to be dense

• Discretised form of the divergence and gradient operator are sparse and well-behaved.
However, a triple product with

[
A−1

u

]
would result in a dense matrix, making it expen-

sive to solve

The above can be remedied be decomposing the momentum matrix before the triple
product into the diagonal part and off-diagonal matrix:

[Au] = [Du] + [LUu] (88)

where [Du] only contains diagonal entries. [Du] is easy to invert and will preserve the
sparseness pattern in the triple product. Revisiting Eqn. (86) before the formation of the Schur
complement and moving the off-diagonal component of [Au] onto r.h.s. yields:[

[Du] [∇(.)]
[∇•(.)] [0]

] [
u
p

]
=

[
− [LUu] [u]

0

]
(89)

A revised formulation of the pressure equation via a Schur’s complement yields:

[∇•(.)]
[
D−1

u

]
[∇(.)]

[
p
]

= [∇•(.)]
[
D−1

u

]
[LUu] [u] (90)

In both cases, matrix
[
D−1

u

]
is simple to assemble.

It follows that the pressure equation is a Poisson equation with the diagonal part of the
discretised momentum acting as diffusivity and the divergence of the velocity on the r.h.s.

Derivation of the pressure equation We shall now rewrite the above derivation formally
without resorting to the assembly of Schur’s complement in order to show the identical result

We shall start by discretising the momentum equation using the techniques described be-
fore. For the purposes of derivation, the pressure gradient term will remain in the differential
form. For each CV, the discretised momentum equation yields:

au
PuP +

∑
N

au
NuN = r − ∇p (91)

30

For simplicity, we shall introduce the H(u) operator, containing the off-diagonal part of
the momentum matrix and any associated r.h.s. contributions:

H (u) = r −
∑

N

au
NuN (92)

Using the above, it follows:

au
PuP = H (u) − ∇p (93)

and

uP =
(
au

P

)−1 (
H (u) − ∇p

)
(94)

Substituting the expression for uP into the incompressible continuity equation ∇•u = 0
yields

∇•

[(
au

P

)−1
∇p

]
= ∇•

((
au

P

)−1
H (u)

)
(95)

We have again arrived to the identical form of the pressure equation

Note the implied decomposition of the momentum matrix into the diagonal and off-
diagonal contribution, where

(
au

P

)
is an coefficient in [Du] matrix and H (u) is the product

[LUu] [u], both appearing in the previous derivation

Assembling Conservative Fluxes Pressure equation has been derived from the continuity
condition and the role of pressure is to guarantee a divergence-free velocity field

Looking at the discretised form of the continuity equation

∇•u =
∑

f

s f •u =
∑

f

F (96)

where F is the face flux

F = s f •u (97)

Therefore, conservative face flux should be created from the solution of the pressure
equation. If we substitute expression for u into the flux equation, it follows:

F = −
(
au

P

)−1
s f •∇p +

(
au

P

)−1
s f •H (u) (98)

A part of the above,
(
au

P

)−1
s f •∇p appears during the discretisation of the Laplacian, for

each face. This is discretised as follows:

(
au

P

)−1
s f •∇p =

(
au

P

)−1

∣∣∣s f

∣∣∣
|d|

(
pN − pP

)
= ap

N

(
pN − pP

)
(99)

Here, ap
N =

(
au

P

)−1 |s f |
|d| is equal to the off-diagonal matrix coefficient in the pressure Lapla-

cian.

Note that in order for the face flux to be conservative, assembly of the flux must be
completely consistent with the assembly of the pressure equation (e.g. non-orthogonal
correction) ”.

31

2.2 Volume of Fluid Method

2.2.1 Introduction

Volume of Fluid (VOF) Method was presented by Hirt & Nichols [10] and started a new
trend in multiphase flow simulation. It relies on the definition of an indicator function. This
function allows us to know wheter the cell is occupied by one fluid or another, or a mix of
both, quoting the original paper:

”Suppose [. . .] that we define a function F whose value is unity at any point
occupied by fluid an zero otherwise. The average value of F in a cell would then
represent the fractional volume of the cell occupied by fluid. In particular, a unit
value of F would correspond to cell full of fluid, while a zero value would indicate
that the cell contained no fluid 19. Cell with F values between zero and one must
then contain a free surface [. . .]
The normal direction to the boundary lies in the direction in which de value of F
changes most rapidly. Because F is a step function, however, its derivatives must
be computed in a special way [. . .]. When properly computed, the derivatives
can be used to determine the boundary normal. Finally, when both the normal
direction and the value of F in the boundary cell are known, a line cutting the cell
can be constructed that approximates the interface there. This boundary location
can then be used in the setting of boundary conditions”.

There are several ways to implement this concept, but in the framework of OpenFOAM
is worthy to analize its special way to do so. Methodology is described in extenso by Ubbink
[11] and Rusche [12], but a concise and up to date20 explanation is given by Berberovic et.
al. [13]. Following are cited some sections of this paper and an explanation of PISO loop in
VOF solvers is added.

2.2.2 Mathematical model

”In the conventional volume-of-fluid (VOF) method [10], the transport equation for an
indicator function, representing the volume fraction of one phase, is solved simultaneously
with the continuity and momentum equations:

∇•U = 0 (100)

∂γ

∂t
+ ∇•

(
Uγ

)
= 0 (101)

∂
(
ρU

)
∂t

+ ∇•
(
ρUU

)
= −∇p + ∇•T + ρfb (102)

where U represents the velocity field shared by the two fluids troughout the flow domain,
γ is the phase fraction, T is the deviatoric viscous stress tensor T = 2µS − 2µ (∇•U) I/3, with
the mean rate of strain tensor S = 0.5

[
∇U + (∇U)T

]
and I = δi j, ρ is density, p is pressure,

fb are body forces pero unit mass. In VOF simulations the latter forces include gravity and

19This statament can be interpreted how F = 1 means cell completely occupied by one fluid and F = 0
completely occupied by another fluid.

20It has be taken in account that OpenFOAM is evolving constantly and some implementation details can
change, its important to use actualized bibliography

32

surface tension effects at the interface. The phase fraction γ can take values whithin the
range 0 6 γ 6 1, with the values of zero and one corresponding to regions accomodating
only one phase. e.g., γ = 0 for gas and γ = 1 for liquid. Accordingly, gradients of the phase
fraction are encountered only in the region of the interface.

Two inmiscible fluids are considered as one effective fluid throughout the domain, the physical
properties of which are calculated as weighted averages based on the distrubution of the
liquid volume fraction, thus being equal to the properties of each fluid in their corresponding
occcupied regions and varying only across the interface,

ρ = ρlγ + ρg
(
1 − γ

)
(103)

µ = µlγ + µg
(
1 − γ

)
(104)

where ρl and ρg are densities of liquid and gas, respectively.

One of the critical issues in numerical simulations of free surface flows using the VOF
model is the conservation of the phase fraction. This is specially the case in flows with
high density ratios, where small errors in volume fraction may lead to significant errors in
calculations of physical properties. Accurate calculation of the phase fraction distribution is
crucial for a proper evaluation of surface curvature, which is required for the determination
of surface tension force and the corresponding pressure gradient acrosss the free surface.
The interface region between two phases is tipically smeared over a few grid cells and is
therefore highly sensitive to grid resolution.

Is not a simple task to assure boundedness and conservativeness of the phase fraction.
Various attemps have been made in order to overcome these difficulties (see [13], refs. 26-29).
Furthermore, the definition of velocity by which the free surface is advancesd, as a single
velocity being shared by both phases, is misleading, e.g. no conclusion can be made as to
what extent the velocity of each particular phase contributes to the velocity of the efective
fluid.

In the present study a modified approach similar to one proposed in [12] is used, with
an advanced model formulated by OpenCFD Ltd. [2], relying on a two-fluid formulation
of the conventional volume-of-fluid model in the framework of finite volume method. Its
systematic derivation is outlined below. In this model an additional convective term origi-
nating from modeling the velocity in terms of weighted average of the corresponding liquid
and gas velocities is introduced into the transport equation for phase fraction, providing
a sharper interface resolution. The model makes use of the two-fluid Eulerian model for
two-phase flow, where phase fraction equations are solved separately for each individual
phase (see [13], ref. 32); hence the equations for each of the phase fractions can be expressed
as

∂γ

∂t
+ ∇•

(
Ul γ

)
= 0 (105)

∂
(
1 − γ

)
∂t

+ ∇•
[
Ug

(
1 − γ

)]
= 0 (106)

where the subscripts l and g denote the liquid and gaseous phase, respectively. Assuming
that the contributions of the liquid and gas velocities to the evolution of the free surface are

33

proportional to the corresponding phase fraction, and defining the velocity of the effective
fluid in a VOF model as a weighted average [14]

U = γUl +
(
1 − γ

)
Ug (107)

Eq. (105) can be rearranged21 and used as an evolution equation for the phase fraction γ,

∂γ

∂t
+ ∇•

(
Uγ

)
+ ∇•

[
Urγ

(
1 − γ

)]
= 0 (108)

where Ur = Ul − Ug is the vector of relative velocity, designated as the ’compression
velocity’.

Accordingly, the equation governing the volume fraction [Eq. (108)] contains an addi-
tional convective term, referred to as the ’compression term’ keeping in mind its role to
’compress’ the free surface towardss a sharper one (it should be noted that the wording
compression represents just a denotation and does not relate to compressible flow). In com-
parison to Eq. (101), this term appears as an artificial contribution to convection of the phase
fraction, but since the derivation of Eq. (108) relies on the velocity defined by Eq. (107), a
strong coupling between the classical VOF and two-fluid model is achieved. The additional
convective term contributes significantly to a higher interface resolution, thus avoiding the

21 Starting with the transport equation for γ we have:

∂γ

∂t
+ ∇•

(
Uγ

)
now, replacing the velocity U by its definition as a weighted average,

∂γ

∂t
+ ∇

{[
γUl +

(
1 − γ

)
Ug

]
γ
}

= 0

from the definition of the relative velocity we can isolate Ug

Ug = Ul −Ur

then replacing in the above transport equations

∂γ

∂t
+ ∇•

{[
Ul −

(
1 − γ

)
Ur

]
γ
}

= 0

rearranging terms

∂γ

∂t
+ ∇•

(
Ul γ

)
︸ ︷︷ ︸

= 0

−∇•
[(

1 − γ
)
γUr

]
= 0

the first two terms of left hand side are zero by the definition of tranport equation for γ at the ’liquid’ phase,
then we have,

∇•
[(

1 − γ
)
γUr

]
= 0

as it’s expressed above this term vanishes in the continuum formulation because in this case interface front
is step function, then is term is ever completely zero.

Now adding this new term to the γ transport equation we obtain

∂γ

∂t
+ ∇•

(
Uγ

)
+ ∇•

[
Urγ

(
1 − γ

)]
= 0

this term has no meaning in the continuum formulation but is suitable to compresss the interface in the
discrete formulation, specially when the interface is not sharp enough.

34

need to devise a special scheme for convection, such as CICSAM (see [13], ref. 34). This term
is active only within the interface region and vanishes at both limits of the phase fraction.
Therefore it does not affect the solution outside this region. Moreover if free surface is defined
in a theoretical sense as having an infinitesimally small thickness, the (relative) velocity Ur vanishes
and the expression (108) reduces to the conventional form (101).

In addition to properly reflecting the physics of the flow, the main advantage of such
formulation is in the possibility of capturing the interface region much more sharply in
comparison to the classical VOF approach. Numerical diffusion, unavoidably introduced
through the discretization of convective terms, can be controlled and minimized through the
discretization of the compression term, thus allowing sharp interface resolution. The details
of its numerical treatment are given [later]. [. . .].

The momentum equation, Eq. 102, is modified in order to account for the effects of surface
tension. The surface tension at the liquid-gas interface generates an additional pressure
gradient resulting in a force, which is evaluated per unit volume using the continuum
surface force (CSF) model (see [13], ref. 35).

fσ = σκ∇γ (109)

where κ is the mean curvature of the free surface, determined from the expressions

κ = −∇•

 ∇γ∣∣∣∇γ∣∣∣
 (110)

Equation (109) is only valid for the cases with constant surface tension, as considered
here. In the case of variable surface tension, e.g., due to nonuniformly distributed tempera-
ture, surface tension gradients are encountered, generating an additional shear stress at the
interface, which should be taken into account.

Both fluids are considered to be Newtonian and incompressible ∇•U = 0, and the rate
of strain tensor is linearly related to the stress tensor, which is decomposed into a more
convenient form for discretization,

∇•T = µ
[
∇U + (∇U)T

]
= ∇•

(
µ∇U

)
+ (∇U) •∇µ (111)

In a single pressure system as considered for the present VOF method, the normal com-
ponent of the pressure gradient at a stationary nonvertical solid wall, with no-slip condition
on velocity, must be different for each phase due to the hydrostatic component ρg when the
phases are separated at the wall, i.e., if a contact line exists. In order to simplify the definition
of boundary conditions, it is common to define a modified pressure as

pd = p − ρg•x (112)

where x is the position vector. It can be easely show that the gradient of modified pressure
pd of the static pressure gradient, the body force due to gravity and an additional contribution
originating from the density gradient. In order to satisfy the momentum equation, the pres-
sure gradient is expressed using Eq. (112) whereas the momentum equation is rearranged
to read [12]

ρU
∂t

+ ∇•
(
ρUU

)
− ∇•

(
µ∇U

)
− (∇U) •∇γ = −∇pd − g•x∇ρ + σκ∇γ (113)

35

Body forces due to pressure gradient and gravity are implicitly accounted for by the first
two terms on the right-hand side of the Eq. (113). Summing up, the present mathematical
model is given by the continuity equation, Eq. (100), phase fraction equation, Eq. (108), and
momentum equation, Eq. (113).

The model is closed by supplying an appropriate expression for the compression velocity
Ur. In order to ensure that this velocity does not bias the solution in any way, it must act
only in the perpendicular direction to the interface. Furthermore, by inspection of Eq. (113) it
is evident that only the values of Ur on the grid cell faces will be used, being in accordance
with the discretization of the convective term. The model for Ur is described in detail [later].

2.2.3 Computational method

Discrezation of the ”compression term” For the discretization of the compression term
in Eq. (108) the relative velocity at cell faces, formulated based on the maximum velocity
magnitude at the interface region and its direction, is determined from the gradient of phase
fraction as follows:

Ur, f = n f min

Cγ

∣∣∣φ∣∣∣∣∣∣S f

∣∣∣ ,max

∣∣∣φ∣∣∣∣∣∣S f

∣∣∣
 (114)

where φ is face volume flux, and n f is face unit normal flux, calculated at cell faces in the
interface region using the phase fraction gradient at cell faces,

n f =

(
∇γ

)
f∣∣∣∣(∇γ) f + δn

∣∣∣∣ •S f (115)

In the normalization of the phase fraction gradient in Eq. (115) and Eq. (110), a stabiliza-
tion factor δn is used, which accounts for nonuniformity of the grid,

δn =
ε(∑

N Vi
N

)1/3 (116)

where N is the number of computational cells and ε is a small parameter, set to 10?8 here.

The model is relatively simple and robust, relying basically on the definition of the
velocity in Eq. (107). If there is a small bulk motion of the gaseous phase in the vicinity of
the free surface, the relative velocity will be close to the velocity of the liquid phase. If the
velocities of both phases are of the same order of magnitude, the intensity of the free surface
compression is controlled by the constant Cγ, which yields no contribution if set to zero,
a conservative compression if the value is one [. . .], and enhanced compression for values
greater than one [16]. It should be noted that the face volume flux in Eq. (114) is not evaluated
using the face interpolation of the velocity, but is determined as a conservative volume flux resulting
from the pressure-velocity coupling algorithm.22

Adaptive time step control In order to ensure stability of the solution procedure, the
calculations are performed using a self-adapting time step which is adjusted at the beginning

22This topic has been discused in Section 2.1.12, paragraph Assembling Conservative Fluxes.

36

of the time iteration loop based on the Courant number defined as

Co =
U f •S f

d•S f
∆t (117)

where d is a vector between calculation points of control volumes sharing the face.
i.e. d = PN and ∆t is time step. Using values for U f and ∆t from previous time step, a
maximum local Courant number Co0 is calculated and the new time step is evaluated from
the expression

∆n
t = min

{Comax

Co0 ∆t0,
(
1 + λ1

Comax

Co0

)
∆t0, λ2∆

0
t ,∆tmax

}
(118)

where ∆tmax and Comax are prescribed limit values for the time step and Courant number,
respectively.

According to this prescription the new time step will decrease if Co0 overshoots Comax

and increase otherwise. To avoid time step oscillations that may lead to instability, the in-
crease of the time step is damped using factors λ1 and λ2, according to the conditions in Eq.
(118).

[. . .]

[. . .] At the startup of the simulation, usually some very small initial time step ∆tinit is
used, which could lead to a very small maximum local value of the Courant number and
a new time step that would be too large for the start, and vice versa. Therefore, at the
beginning of the calculation an intermediate value for the initial time step is calculated as

∆t∗init = min
(Comax∆tinit

Co0 ; ∆tmax

)
(119)

This intermediate value is than used as ∆t0 in Eq. (118) providing the value of Co0 for the
first time step to be close to the prescribed limit value Comax. [. . .].

Temporal subcycling It is common in VOF-based methods that the convergence and sta-
bility of the solution procedure are very sensitive with respect to the equation for phase
fraction. Bounded discretization schemes for divergence terms and time step control are
both used to overcome these difficulties and, although it is generally recommended to keep
the maximum local Courant number much below unity, it is beneficial to solve the phase
fraction equation in several subcycles within a single time step. The time step to be used in a
single time subcycle is set by dividing the global time step by the preset number of subcycles,

∆tsc =
∆t
nsc

(120)

After the phase fraction γ in each subcycle is updated, a corresponding mass flux Fsc,i

through cell faces is calculated.

The total mass flux F corresponding to the global time step, which is needed in the
momentum equation, is then obtained from

F = ρU f •S f =

nsc∑
i=1

∆tsc

∆t
Fsc,i (121)

37

In addition to providing a more accurate solution of the phase fraction equation, this
algorithm also enables the global time step size to be greater for the solution of other
transport equations, thereby considerably speeding up the solution procedure”.

PISO loop In order to achieve a properly coupling between velocity and pressure in
interFoam is necessary to adapt the PISO loop to the momentum equation for interphase
solver and derive a new pressure equation. Starting with momentum equation (113) we
have:

ρU
∂t

+ ∇•
(
ρUU

)
− ∇•

(
µ∇U

)
− (∇U) •∇γ = −∇pd − g•x∇ρ + σκ∇γ

Now following the guidelines given in Section 2.1.12 we can obtain a discretized form of
momentum equation (compare it with Eq. 93)

au
PuP = H (u) − ∇pd − g•x∇ρ + σκ∇γ (122)

isolating the velocity at cell centres:

uP =
[
au

P

]−1 {[
H (u) − g•x∇ρ + σκ∇γ

]
− ∇pd

}
(123)

replacing this velocity in continuity equation is possible to assemble a Poisson equation
for pressure pd

∇•

{[
au

P

]−1
∇pd

}
= ∇•

{[
au

P

]−1 [
H (u) − g•x∇ρ + σκ∇γ

]}
(124)

Finally it is necessary to obtain fluxes that obeys continuity, it is achieved by

F = −
(
au

P

)−1
s f •∇pd +

(
au

P

)−1
s f •

[
H (u) − g•x∇ρ + σκ∇γ

]
(125)

3 OpenFOAM library overview. Solver examples

3.1 Fields and variables. Discrete differential operators

Computational implementation of above explained discretisation is carried out by means
of OpenFOAM C++ libraries. These libraries can be used for general purposes like field
handling, postproccesing and calculus. Libraries are accompanied by a huge solver set mod-
elling different physical phenomena.

A brief description of this libraries was published in [15], further information can be
found in OpenFOAM User Guide chapter 3 [16] and Programmer’s Guide chapters 1-2 [17]
whose reading is highly encouraged.

Following are several excerpts from Weller et. al. paper with the aim to introduce in
OpenFOAM libraries. Can be some differences between actual notation and sources’s nota-
tion because of the natural evolving of the software.

38

3.1.1 Implementation of tensor fields

”The majority of fluid dynamics can be described using the tensor calculus of up to rank
2, i.e., scalars, vectors, and second-rank tensors. Therefore three basic classes have been
created: scalarField, vectorField, and tensorField. [. . .]

These tensor field classes are somewhat different from a mathematical tensor field in that
they contain no positional information; they are essentially ordered lists of tensors, and so
only pointwise operations (i.e., tensor algebra) can be performed at this level. The operators
implemented [in OpenFOAM] include addition and subtraction, multiplication by scalars,
formation of various inner products, and the vector and outer products of vectors (resulting
in vectors and tensors, respectively). In addition, operations such as taking the trace and
determinant of a tensor are included as well as functions to obtain the eigenvalues and
eigenvectors; these are not necessary for solution of fluid systems but are of importance for
postprocessing the data [. . .].

Since C++ implements operator overloading, it is possible to make the tensor algebra
resemble mathematical notation by overloading +, -, *, etc. The one problem inherent here is
that the precedence of the various operators is preset, which makes it quite difficult to find
an operator for the dot product with the correct precedence and that looks correct.

The next level of tensors are referred to as ’geometric tensor fields’ and contain the positional
information lacking in the previous classes. Again, there are classes for the three ranks of ten-
sors currently implemented, volScalarField, volVectorField, and volTensorField. At
first, the relationship between, for example, scalarField and volScalarField should be [. . .],
derivation. However, this would allow the compiler to acceptscalarField1+volScalarField
as an operation, which would not be appropriate, and so encapsulation is used instead. In
addition to the additional metrical information necessary to perform differentiation, which
is contributed by a reference to a ’mesh class’ fvMesh (see below), these classes contain
boundary information, previous time steps necessary for the temporal discretization, and
dimension set information. All seven base SI dimensions are stored, and all algebraic expres-
sions implemented above this level are dimensionally checked at execution. It is therefore
impossible to execute a dimensionally incorrect expression in [OpenFOAM]. This has no
significant runtime penalty whatsoever: typical fields have 104-105 tensors in them, and
dimension checking is done once per field operation.

Currently two types of tensor-derivative classes are implemented in [OpenFOAM]:
finiteVolumeCalculus or fvc, which performs an explicit evaluation from predetermined data
and returns a geometric tensor field, and finiteVolumeMethod or fvm, which returns a matrix
representation of the operation, which can be solved to advance the dependent variable(s) by a time
step. fvm will be described later in more detail [. . .]. The fvc class has no private data and
merely implements static member functions that map from one tensor field to another. Use
of a static class in this manner mimics the concept of a namespace [. . .], and by implement-
ing the operations in this manner, a clear distinction is drawn between the data and the
operations on the data. The member functions of this class implement the finite-volume
equivalent of various differential operators, for example, the expression

vorticity = 0.5*fvc::curl(U);

calculates the vorticity of a vector field U as 1
2∇ × U. (For reasons of space, not all the

variables in the program fragments used to illustrate points will be defined. The names are,

39

however, usually quite descriptive). This also illustrates the ease with which [OpenFOAM]
can be used to manipulate tensorial data as a postprocessing exercise. Any [OpenFOAM]
code can be thought of as an exercise in mapping from one tensor field to another, and it
matters little whether the mapping procedure involves the solution of a differential equation
or not. Hence, writing a short code to calculate the vorticity of a vector field is a matter of
reading in the data (for which other functions, not described here, are provided), performing
this manipulation, and writing out the results. Very complicated expressions can be built up
in this way with considerable ease.

All possible tensorial derivatives are implemented in [OpenFOAM]: ∂/∂t, ∇•, ∇ and ∇×.
In addition, the Laplacian operator is implemented independently rather than relying on the
use of ∇ followed by ∇•. This enables improved discretization practices to be used for this
operator. The one numerical issue that has to be dealt with at the top level of the code is the
choice of differencing scheme to be used to calculate the derivative. Again, because of the
data hiding in OOP, the numerics can be effectively divorced from the high-level issues of
modeling: improved differencing schemes can be implemented and tested separately from
the codes that they will eventually be used in. The choice can be made at the modeling level
by using a switch in the operator. Hence, the temporal derivative ∂/∂t can be invoked as

volVectorField dUdt = fvc::ddt(U, EI)

where the second entry specifies which differencing scheme to use (in this case Euler
implicit). Several temporal differencing schemes are available, with a default corresponding
to the scheme that gets the most use, in this case, backward differencing. Other selection
methods are possible, but this one is the simplest.

3.1.2 Implementation of partial-differential-equation classes

The fvc methods correspond directly to tensor differential operators, since they map tensor fields to
tensor fields. [CFD] requires the solution of partial differential equations, which is accom-
plished by converting them into systems of difference equations by linearizing them and
applying discretization procedures. The resulting matrices are inverted using a suitable
matrix solver.

The differential operators ∇•, ∇, and ∇× lead to sparse matrices, which for unstructured
meshes have a complex structure requiring indirect addressing and appropriate solvers.
[OpenFOAM] currently uses the conjugate-gradient method, with incomplete Cholensky
preconditioning (ICCG), to solve symmetric matrices. For asymmetric matrices the Bi-
CGSTAB method is used23. The matrix inversion is implemented using face addressing throughout,
a method in which elements of the matrix are indexed according to which cell face they are associated
with. Both transient and steady-state solutions of the equation systems are obtained by time-marching,
with the time step being selected to guarantee diagonal dominance of the matrices, as required by the
solvers24.

In order that standard mathematical notation can be used to create matrix representations
of a differential equation, classes of equation object called [fvScalarMatrix], [fvVectorMatrix],

23See original paper cites for details of these methods
24Face addressing is a key concept in OpenFOAM because relates mesh generation and description, matrix

element indexing and solving

40

etc., are defined to handle addressing issues, storage allocation, solver choice, and the so-
lution. These classes store the matrices that represent the equations. The standard mathe-
matical operators + and - are overloaded to add and subtract matrix objects. In addition,
all the tensorial derivatives ∂/∂t, ∇•, ∇×, etc., are implemented as member functions of a
class finiteVolumeMethod (abbreviated to fvm), which construct appropriate matrices using
the finite-volume discretization. Numerical considerations are relevant in deciding the exact
form of many of the member functions. For instance, in the FVM, divergence terms are
represented by surface integrals over the control volumes δVi. Thus the divergence function
call is div(phi,Q), where phi is the flux, a field whose values are recorded on the cell faces, and Q
is the quantity being transported by the flux, and is a field whose values are on the cell centers. For
this reason, this operation cannot be represented as a function call of the form div(phi*Q).
Again, the Laplacian operator is implemented as a single separate call rather than as calls to div and
grad, since its numerical representation is different. Various forms of source term are also im-
plemented. A source term can be explicit, in which case it is a special kind of equation object
with entries only in the source vector [. . .], or it can be made implicit, with entries in the
matrix [. . .]. Construction of an explicit source term is provided for by further overloading
+ (and -) to provide operations such as fvm+volScalarField. Construction of an implicit
source is arranged by providing a function Sp(a,Q), thus specifying the dependent variable
Qto be solved for.

Thus it is possible to build up the matrix system appropriate to any equation by summing the
individual terms in the equation. As an example, consider the mass conservation equation
∂/partialt + ∇•

(
φ
)

= 0, where φ = ρU. The matrix system can be assembled by writing

fvMatrixScalar rhoEq
(
fvm::ddt(rho) + fvc::div(phi)
);

where the velocity flux phi has been evaluated previously,and solved by the call

rhoEq.solve();

to advance the value of ρ by one timestep. Where necessary, the solution tolerance can be
explicitly specified. For completeness, the operation == is defined to represent mathematical
equality between two sides of an equation. This operator is here entirely for stylistic reasons,
since the code automatically rearranges the equation (all implicit terms go into the matrix, and all
explicit terms contribute to the source vector). In order for this to be possible, the operator
chosen must have the lowest priority, which is why == was used; this also emphasizes that
this represents equality of the equation, not assignment.

3.1.3 Mesh topology and boundary conditions

Geometric information is contributed to the geometric fields by the class fvMesh, which con-
sists of a list of vertices, a list of internal cells, and a list of boundary patches (which in turn are lists
of cell faces). The vertices specify the mesh geometry, whereas the topology of any cell–be
it one dimension (1D) (a line), two dimensions (2D) (a face), or three dimensions (3D) (a
cell)–is specified as an ordered list of the indices together with a shape primitive describing
the relationship between the ordering in the list and the vertices in the shape. These prim-
itive shapes are defined at run time, and so the range of primitive shapes can be extended

41

with ease, although the 3D set tetrahedron (four vertices), pyramid (five vertices), prism
(six vertices), and hexahedron (eight vertices) cover most eventualities. In addition, each n-
dimensional primitive shape knows about its decomposition into (n-1)-dimensional shapes,
which are used in the creation of addressing lists as, for example, cell-to-cell connectivity.

Boundary conditions are regarded as an integral part of the field rather than as an added extra.
fvMesh incorporates a set of patches that define the exterior boundary ∂D of the domain. Every patch
carries a boundary condition, which is dealt with by every fvm operator in an appropriate
manner. Different classes of patch treat calculated, fixed value, fixed gradient, zero gradient,
symmetry, cyclic, and other boundary conditions, all of which are derived from a base class
patchField. All boundary conditions have to provide the same types of information, that
is, that they have the same interface but different implementations. This is therefore a good
example of polymorphism within the code. From these basic elements, boundaries suitable
for inlets, outlets, walls, etc., can be devised for each specific situation. An additional
patchField, processor is also available”.

3.2 Solver examples

3.2.1 Scalar transport equation

One of the simplest solvers and a good starting point in OpenFOAM solver comprehension
is scalarTransportFoam, this solver allows solving an unsteady scalar advection-diffusion
equation such as:

∂C
∂t

+ ∇• (U C) − Γ∇2C = 0 (126)

where C is the scalar concentration, U the advective velocity field and Γ the diffusivity.
In this case the solver’s code is:

1 #include "fvCFD.H"
2
3 // * //
4
5 int main(int argc, char *argv[])
6 {
7
8 # include "setRootCase.H"
9

10 # include "createTime.H"
11 # include "createMesh.H"
12 # include "createFields.H"
13
14
15 // * //
16
17 Info<< "\nCalculating scalar transport\n" << endl;
18
19 # include "CourantNo.H"
20
21 for (runTime++; !runTime.end(); runTime++)
22 {
23 Info<< "Time = " << runTime.timeName() << nl << endl;
24
25 # include "readSIMPLEControls.H"
26

42

27 for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
28 {
29 solve
30 (
31 fvm::ddt(T)
32 + fvm::div(phi, T)
33 − fvm::laplacian(DT, T)
34);
35 }
36
37 runTime.write();
38 }
39
40 Info<< "End\n" << endl;
41
42 return(0);
43 }
44
45
46
47 // *** //
48
49 // createFields.H
50
51 Info<< "Reading field T\n" << endl;
52
53 volScalarField T
54 (
55 IOobject
56 (
57 "T",
58 runTime.timeName(),
59 mesh,
60 IOobject::MUST READ,
61 IOobject::AUTO WRITE
62),
63 mesh
64);
65
66
67 Info<< "Reading field U\n" << endl;
68
69 volVectorField U
70 (
71 IOobject
72 (
73 "U",
74 runTime.timeName(),
75 mesh,
76 IOobject::MUST READ,
77 IOobject::AUTO WRITE
78),
79 mesh
80);
81
82
83 Info<< "Reading transportProperties\n" << endl;
84
85 IOdictionary transportProperties
86 (

43

87 IOobject
88 (
89 "transportProperties",
90 runTime.constant(),
91 mesh,
92 IOobject::MUST READ,
93 IOobject::NO WRITE
94)
95);
96
97
98 Info<< "Reading diffusivity D\n" << endl;
99

100 dimensionedScalar DT
101 (
102 transportProperties.lookup("DT")
103);
104
105 # include "createPhi.H"
106
107
108 // *** //
109
110 // createPhi.H
111
112 #ifndef createPhi H
113 #define createPhi H
114
115 // * //
116
117 Info<< "Reading/calculating face flux field phi\n" << endl;
118
119 surfaceScalarField phi
120 (
121 IOobject
122 (
123 "phi",
124 runTime.timeName(),
125 mesh,
126 IOobject::READ IF PRESENT,
127 IOobject::AUTO WRITE
128),
129 linearInterpolate(U) & mesh.Sf()
130);
131
132 // * //
133

134 #endif

Let’s comment the code:

• Line 1: fvCFD.H is included with the aim of have available all the FVM machinery.

• Lines 2-11: starts the main function. Command line parameters, time variables and
mesh set up.

• Line 12: createFields.H reads the initial conditions for U, T and diffusivity DT (Γ)
(see code in lines 47-107). This file include at the end createPhi.H (lines 108-134), read
(if it’s present) or calculate the face flux field φ.

44

• Line 17: Shows a message by standard output indicating that calculation begins.

• Line 19: CourantNo.H is included it calculates and outputs the mean and maximum
Courant Numbers.

• Lines 21-38: temporal main cycle controlled by runTime object.

• Line 23: now within the temporal cycle, this commands prints the actual time.

• Line 25: readSIMPLEControls.H is included, allowing in this case to read the number
of non-orthogonal corrections.

• Lines 27-35: As was expressed in Section 2.1.4, paragraph Diffusion Term, laplacian
term is discretized by means of face gradient. This discretizacion requires non-
orthogonal corrections in case of non orthogonal mesh is used. Then this loop ap-
plies this correction as many times as is indicated by the nNonOrthCorr variable.
Note that the function solve solves every time the same problem. It requires some
explanation, solve(fvm::ddt(T)+fvm::div(phi, T)-fvm::laplacian(DT, T)); im-
plies that three systems of equations are assembled, one for each term. Every system
has it own matrix, guess values and r.h.s. values. Because fvm methods only con-
tributes to matrix and T is the guess field, these terms when are added form a system
of equations with zero r.h.s. Right hand side remains zero because == operator hasn’t
been used indicating no source term. In each temporal step r.h.s. starts being zero,
but we have n steps of orthogonal corrections, then as was expressed in Section 2.1.4,
paragraph Diffusion Term and in section 2.1.7, orthogonal correction is applied by
means of a contribution to source term from the face gradient (calculated by previous
step values). So in each non-orthogonal correction step the r.h.s. changes forcing the
system to a correct diffusion term calculation25.

• Line 37: this line indicates writing the fields to hard disk.

• Line 39-43: finally program shows a message by standard output indicating end of
calculation and returns the control to the system.

3.2.2 Isothermal, incompressible and laminar Navier-Stokes solver

As our next step in complexity let’s study the isothermal, incompressible and laminar Navier-
Stokes solver, namely icoFoam, this solves the system of equations:

∇•U = 0
∂U
∂t

+ ∇• (UU) − ∇• (ν∇U) = −∇p

as was explained in Sections 2.1.8-2.1.12 using the PISO algorithm for unsteady calcula-
tions.

The code is that follows:
1 #include "fvCFD.H"
2
3 // * //

25See Section 3.1 of [17] for an excellent example of non-orthogonal correction

45

4
5 int main(int argc, char *argv[])
6 {
7
8 # include "setRootCase.H"
9 # include "createTime.H"

10 # include "createMesh.H"
11 # include "createFields.H"
12 # include "initContinuityErrs.H"
13
14 // * //
15
16 Info<< "\nStarting time loop\n" << endl;
17
18 for (runTime++; !runTime.end(); runTime++)
19 {
20 Info<< "Time = " << runTime.timeName() << nl << endl;
21
22 # include "readPISOControls.H"
23 # include "CourantNo.H"
24
25 fvVectorMatrix UEqn
26 (
27 fvm::ddt(U)
28 + fvm::div(phi, U)
29 − fvm::laplacian(nu, U)
30);
31
32 solve(UEqn == −fvc::grad(p));
33
34 // −−− PISO loop
35
36 for (int corr=0; corr<nCorr; corr++)
37 {
38 volScalarField rUA = 1.0/UEqn.A();
39
40 U = rUA*UEqn.H();
41 phi = (fvc::interpolate(U) & mesh.Sf())
42 + fvc::ddtPhiCorr(rUA, U, phi);
43
44 adjustPhi(phi, U, p);
45
46 for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
47 {
48 fvScalarMatrix pEqn
49 (
50 fvm::laplacian(rUA, p) == fvc::div(phi)
51);
52
53 pEqn.setReference(pRefCell, pRefValue);
54 pEqn.solve();
55
56 if (nonOrth == nNonOrthCorr)
57 {
58 phi −= pEqn.flux();
59 }
60 }
61
62 # include "continuityErrs.H"
63

46

64 U −= rUA*fvc::grad(p);
65 U.correctBoundaryConditions();
66 }
67
68 runTime.write();
69
70 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
71 << " ClockTime = " << runTime.elapsedClockTime() << " s"
72 << nl << endl;
73 }
74
75 Info<< "End\n" << endl;
76
77 return(0);
78 }
79
80 // *** //
81
82 // createFields.H
83
84 Info<< "Reading transportProperties\n" << endl;
85
86 IOdictionary transportProperties
87 (
88 IOobject
89 (
90 "transportProperties",
91 runTime.constant(),
92 mesh,
93 IOobject::MUST READ,
94 IOobject::NO WRITE
95)
96);
97
98 dimensionedScalar nu
99 (

100 transportProperties.lookup("nu")
101);
102
103 Info<< "Reading field p\n" << endl;
104 volScalarField p
105 (
106 IOobject
107 (
108 "p",
109 runTime.timeName(),
110 mesh,
111 IOobject::MUST READ,
112 IOobject::AUTO WRITE
113),
114 mesh
115);
116
117
118 Info<< "Reading field U\n" << endl;
119 volVectorField U
120 (
121 IOobject
122 (
123 "U",

47

124 runTime.timeName(),
125 mesh,
126 IOobject::MUST READ,
127 IOobject::AUTO WRITE
128),
129 mesh
130);
131
132 # include "createPhi.H"
133
134 label pRefCell = 0;
135 scalar pRefValue = 0.0;

136 setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell, pRefValue);

Respecto to this code we have:

• Lines 1-15: the initialization is similar to scalarTransportFoam but in this case init
ContinuityErrs.Hfile is included to initilialize the calculations of error and increateFields.H
reference pressure is set (see lines 134-136).

• Line 16: a message indicating the starting of time loop is sent to standard output.

• Lines 18-73: temporal loop controlled by runTime object.

• Line 20: a message indicating the actual time is sent to standard output.

• Line 22: the inclusion of readPISOControls.H archive allows reading the PISO solver
parameters, in this case specially the number of non-orthogonal corrections (nNonOrthCorr)
in pressure equation solving and the number of PISO loops (nCorr).

• Line 23: Courant number is calculated for actual step.

• Lines 25-32: Navier-Stokes equations are solved for U using φ and p from a previous
(or initial) step. Firstly left hand side of equation is assembled and then solve(UEqn
== -fvc::grad(p)); sentence is used meaning the right hand side is the face gradient
of p, this is explicitely calculated because a previous p field value is used. So, fvm
operators contribute to system matrix and fvc to the source term. Solving this system
is called the momentum predictor. ”This gives us a velocity field that is not divergence
free, but aproximately satisfies momentum” [18].

• Lines 34-66: PISO loop is performed (see Section 2.1.12) (check Section 2.1.12 para-
graph Derivation of the pressure equation). This loop is performed as many times as
indicated by the nCorr variable. As is indicated in this section we have to calculate the
reciprocal of diagonal coefficients UEqn realated matrix, to use it in later calculus, so
in line 38 we have: volScalarField rUA = 1.0/UEqn.A(); where have made use of
UEqn.A()method to extract the diagonal coefficients.
The next step is to solve the Pressure Equation created specially for this incompressible
problem or Eq. (95), this is achieved by several intermediate steps. First of all the
part between parenthesis of r.h.s in Eq. (95) is calculated in line 40, using the method
UEqn.H() to extract the off-diagonal part of the UEqn associated matrix. Here is impor-
tant to note that by Eq. (17), the divergence is calculated as a sum of face fluxes, then
it is important to give to this operator an appropriate face flux. This is calculated in
lines 41-42, 44.; fvc::interpolate(U) & mesh.Sf() recalls the standard calculation
of φ (or F by Jasak’s Thesis nomenclature), like in createPhi.H, but in this case we can

48

apply different interpolation schemes indicated in system/fvSchemes file. Another
term is added to φ calculation, fvc::ddtPhiCorr(rUA, U, phi) which ”accounts for
the divergence of the face flux of the face velocity field by taking out the difference
between the interpolated velocity and the flux” [18]26

In line 44 there is another correction, in this case with the aim of ”[adjusting] the inlet
and outlet fluxes to obey continuitym, which is neccesary for creating a well-possed
problem where a solution for pressure exists” [18].
Now is possible to solve Eq. (95) (line 54), but being involved a gradient calculation is
newly necessary to do the non-orthogonal corrections. Another thing to do is set the
reference pressure (line 53) before solving.
Once non-orthogonal correction loop is finalized φ flux is corrected by p as is indicated
in equation (98), then continuity errors are calculated and reported in line 62.
Now it is possible to refresh U by Eq. (94) (line 64) and correct boundary field of this
this volVectorField (line 65).

• Lines 68-78: program finalizes writing data to disk and execution times to standard
output.

3.2.3 Volume of Fluid laminar solver

Having analized previous solvers it is time to face the description of interFoam solver. Previ-
uos work is worthy because for VOF method is necessary to solve scalar transport equations
and manage pressure-velocity coupling in momentum equations solving.

Thus, having in mind this theory and code, we recall section 2.2 to analize the following
code:

1 #include "fvCFD.H"
2 #include "MULES.H"
3 #include "subCycle.H"
4 #include "interfaceProperties.H"
5 #include "twoPhaseMixture.H"
6
7 // * //
8
9 int main(int argc, char *argv[])

10 {
11 #include "setRootCase.H"
12 #include "createTime.H"
13 #include "createMesh.H"
14 #include "readEnvironmentalProperties.H"
15 #include "readPISOControls.H"
16 #include "initContinuityErrs.H"
17 #include "createFields.H"
18 #include "readTimeControls.H"
19 #include "correctPhi.H"
20 #include "CourantNo.H"
21 #include "setInitialDeltaT.H"
22
23 // * //
24
25 Info<< "\nStarting time loop\n" << endl;

26See also: http://www.cfd-online.com/Forums/openfoam-solving/60096-ddtphicorr.html and
http://www.cfd-online.com/Forums/openfoam-solving/59636-why-say-uses-e2-80-98pseudostaggered-e2-
80-99-finite-volume-numerics.html for replies on this topic by Henry Weller and Hrvoje Jasak.

49

http://www.cfd-online.com/Forums/openfoam-solving/60096-ddtphicorr.html
http://www.cfd-online.com/Forums/openfoam-solving/59636-why-say-uses-e2-80-98pseudostaggered-e2-80-99-finite-volume-numerics.html
http://www.cfd-online.com/Forums/openfoam-solving/59636-why-say-uses-e2-80-98pseudostaggered-e2-80-99-finite-volume-numerics.html

26
27 while (runTime.run())
28 {
29 #include "readPISOControls.H"
30 #include "readTimeControls.H"
31 #include "CourantNo.H"
32 #include "setDeltaT.H"
33
34 runTime++;
35
36 Info<< "Time = " << runTime.timeName() << nl << endl;
37
38 twoPhaseProperties.correct();
39
40 #include "gammaEqnSubCycle.H"
41
42 #include "UEqn.H"
43
44 // −−− PISO loop
45 for (int corr=0; corr<nCorr; corr++)
46 {
47 #include "pEqn.H"
48 }
49
50 #include "continuityErrs.H"
51
52 p = pd + rho*gh;
53
54 runTime.write();
55
56 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
57 << " ClockTime = " << runTime.elapsedClockTime() << " s"
58 << nl << endl;
59 }
60
61 Info<< "End\n" << endl;
62
63 return(0);
64 }
65
66
67 // *** //
68
69 // createFields.H
70
71 Info<< "Reading field pd\n" << endl;
72 volScalarField pd
73 (
74 IOobject
75 (
76 "pd",
77 runTime.timeName(),
78 mesh,
79 IOobject::MUST READ,
80 IOobject::AUTO WRITE
81),
82 mesh
83);
84
85 Info<< "Reading field gamma\n" << endl;

50

86 volScalarField gamma
87 (
88 IOobject
89 (
90 "gamma",
91 runTime.timeName(),
92 mesh,
93 IOobject::MUST READ,
94 IOobject::AUTO WRITE
95),
96 mesh
97);
98
99 Info<< "Reading field U\n" << endl;

100 volVectorField U
101 (
102 IOobject
103 (
104 "U",
105 runTime.timeName(),
106 mesh,
107 IOobject::MUST READ,
108 IOobject::AUTO WRITE
109),
110 mesh
111);
112
113 # include "createPhi.H"
114
115
116 Info<< "Reading transportProperties\n" << endl;
117 twoPhaseMixture twoPhaseProperties(U, phi, "gamma");
118
119 const dimensionedScalar& rho1 = twoPhaseProperties.rho1();
120 const dimensionedScalar& rho2 = twoPhaseProperties.rho2();
121
122
123 // Need to store rho for ddt(rho, U)
124 volScalarField rho
125 (
126 IOobject
127 (
128 "rho",
129 runTime.timeName(),
130 mesh,
131 IOobject::READ IF PRESENT
132),
133 gamma*rho1 + (scalar(1) − gamma)*rho2,
134 gamma.boundaryField().types()
135);
136 rho.oldTime();
137
138
139 // Mass flux
140 // Initialisation does not matter because rhoPhi is reset after the
141 // gamma solution before it is used in the U equation.
142 surfaceScalarField rhoPhi
143 (
144 IOobject
145 (

51

146 "rho*phi",
147 runTime.timeName(),
148 mesh,
149 IOobject::NO READ,
150 IOobject::NO WRITE
151),
152 rho1*phi
153);
154
155
156 Info<< "Calculating field g.h\n" << endl;
157 volScalarField gh("gh", g & mesh.C());
158 surfaceScalarField ghf("gh", g & mesh.Cf());
159
160
161 volScalarField p
162 (
163 IOobject
164 (
165 "p",
166 runTime.timeName(),
167 mesh,
168 IOobject::NO READ,
169 IOobject::AUTO WRITE
170),
171 pd + rho*gh
172);
173
174
175 label pdRefCell = 0;
176 scalar pdRefValue = 0.0;
177 setRefCell(pd, mesh.solutionDict().subDict("PISO"), pdRefCell, pdRefValue);
178
179
180 // Construct interface from gamma distribution
181 interfaceProperties interface(gamma, U, twoPhaseProperties);
182
183 // *** //
184
185 // correctPhi.H
186
187
188 {
189 # include "continuityErrs.H"
190
191 wordList pcorrTypes(pd.boundaryField().types());
192
193 for (label i=0; i<pd.boundaryField().size(); i++)
194 {
195 if (pd.boundaryField()[i].fixesValue())
196 {
197 pcorrTypes[i] = fixedValueFvPatchScalarField::typeName;
198 }
199 }
200
201 volScalarField pcorr
202 (
203 IOobject
204 (
205 "pcorr",

52

206 runTime.timeName(),
207 mesh,
208 IOobject::NO READ,
209 IOobject::NO WRITE
210),
211 mesh,
212 dimensionedScalar("pcorr", pd.dimensions(), 0.0),
213 pcorrTypes
214);
215
216 dimensionedScalar rUAf("(1|A(U))", dimTime/rho.dimensions(), 1.0);
217
218 adjustPhi(phi, U, pcorr);
219
220 for(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
221 {
222 fvScalarMatrix pcorrEqn
223 (
224 fvm::laplacian(rUAf, pcorr) == fvc::div(phi)
225);
226
227 pcorrEqn.setReference(pdRefCell, pdRefValue);
228 pcorrEqn.solve();
229
230 if (nonOrth == nNonOrthCorr)
231 {
232 phi −= pcorrEqn.flux();
233 }
234 }
235
236 # include "continuityErrs.H"
237 }
238
239 // *** //
240
241 // gammaEqnSubCycle.H
242
243
244 label nGammaCorr
245 (
246 readLabel(piso.lookup("nGammaCorr"))
247);
248
249 label nGammaSubCycles
250 (
251 readLabel(piso.lookup("nGammaSubCycles"))
252);
253
254 if (nGammaSubCycles > 1)
255 {
256 dimensionedScalar totalDeltaT = runTime.deltaT();
257 surfaceScalarField rhoPhiSum = 0.0*rhoPhi;
258
259 for
260 (
261 subCycle<volScalarField> gammaSubCycle(gamma, nGammaSubCycles);
262 !(++gammaSubCycle).end();
263)
264 {
265 # include "gammaEqn.H"

53

266 rhoPhiSum += (runTime.deltaT()/totalDeltaT)*rhoPhi;
267 }
268
269 rhoPhi = rhoPhiSum;
270 }
271 else
272 {
273 # include "gammaEqn.H"
274 }
275
276 interface.correct();
277
278 rho == gamma*rho1 + (scalar(1) − gamma)*rho2;
279
280
281 // *** //
282
283 // UEqn.H
284
285 surfaceScalarField muf = twoPhaseProperties.muf();
286
287 fvVectorMatrix UEqn
288 (
289 fvm::ddt(rho, U)
290 + fvm::div(rhoPhi, U)
291 − fvm::laplacian(muf, U)
292 − (fvc::grad(U) & fvc::grad(muf))
293 //− fvc::div(muf*(fvc::interpolate(dev(fvc::grad(U))) & mesh.Sf()))
294);
295
296 if (momentumPredictor)
297 {
298 solve
299 (
300 UEqn
301 ==
302 fvc::reconstruct
303 (
304 (
305 fvc::interpolate(interface.sigmaK())*fvc::snGrad(gamma)
306 − ghf*fvc::snGrad(rho)
307 − fvc::snGrad(pd)
308) * mesh.magSf()
309)
310);
311 }
312
313
314 // *** //
315
316 // pEqn.H
317
318 {
319 volScalarField rUA = 1.0/UEqn.A();
320 surfaceScalarField rUAf = fvc::interpolate(rUA);
321
322 U = rUA*UEqn.H();
323
324 surfaceScalarField phiU
325 (

54

326 "phiU",
327 (fvc::interpolate(U) & mesh.Sf()) + fvc::ddtPhiCorr(rUA, rho, U, phi)
328);
329
330 phi = phiU +
331 (
332 fvc::interpolate(interface.sigmaK())*fvc::snGrad(gamma)
333 − ghf*fvc::snGrad(rho)
334)*rUAf*mesh.magSf();
335
336 adjustPhi(phi, U, pd);
337
338 for(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
339 {
340 fvScalarMatrix pdEqn
341 (
342 fvm::laplacian(rUAf, pd) == fvc::div(phi)
343);
344
345 pdEqn.setReference(pdRefCell, pdRefValue);
346
347 if (corr == nCorr−1 && nonOrth == nNonOrthCorr)
348 {
349 pdEqn.solve(mesh.solver(pd.name() + "Final"));
350 }
351 else
352 {
353 pdEqn.solve(mesh.solver(pd.name()));
354 }
355
356 if (nonOrth == nNonOrthCorr)
357 {
358 phi −= pdEqn.flux();
359 }
360 }
361
362 U += rUA*fvc::reconstruct((phi − phiU)/rUAf);
363 U.correctBoundaryConditions();
364 }
365
366
367 // *** //
368
369 // gammaEqn.H
370
371 {
372 word gammaScheme("div(phi,gamma)");
373 word gammarScheme("div(phirb,gamma)");
374
375 surfaceScalarField phic = mag(phi/mesh.magSf());
376 phic = min(interface.cGamma()*phic, max(phic));
377 surfaceScalarField phir = phic*interface.nHatf();
378
379 for (int gCorr=0; gCorr<nGammaCorr; gCorr++)
380 {
381 surfaceScalarField phiGamma =
382 fvc::flux
383 (
384 phi,
385 gamma,

55

386 gammaScheme
387)
388 + fvc::flux
389 (
390 −fvc::flux(−phir, scalar(1) − gamma, gammarScheme),
391 gamma,
392 gammarScheme
393);
394
395 MULES::explicitSolve(gamma, phi, phiGamma, 1, 0);
396
397 rhoPhi = phiGamma*(rho1 − rho2) + phi*rho2;
398 }
399
400 Info<< "Liquid phase volume fraction = "
401 << gamma.weightedAverage(mesh.V()).value()
402 << " Min(gamma) = " << min(gamma).value()
403 << " Max(gamma) = " << max(gamma).value()
404 << endl;
405 }
406

407

• Lines 1-6: especific .H files are included.

• Lines 9-21: main function begins, case initialization. Particularly readEnvironmental
Properties.H reads the gravitational acceleration. createFields.H includes some
additional lines respect other solvers, in lines 116-120 twoPhaseProperties object is
created with properties read from disk, from this densities are loaded in rho1 and
rho2. Another important fields are gh ghf accounting the product of distance and
gravitational acceleration for further calculations (see lines 156-158). p field is created
from relative pressure and fluid column contribution, and reference pressure is set (see
lines 161-177). At the end interface object is created to hold interface properties such
as surface tension, curvature, etc.
In line 19 correcPhi.H file is included (see lines 185-236), here field phi previously
created is corrected by imposed pressures at boundaries.

• Lines 25-32: after starting messages main loop begins reading controls, calculating
Courant number and setting the timestep. Last action is performed by setDeltaT.H
code, to mantain a constant maximum Courant number, following the steps outlined
in section 2.2.3 paragraph Adaptive Time Step Control.

• Lines 34-36: time is avanced and reported by standar output.

• Line 38: correct() method of twoPhaseProperties object is invoked to calculate the
new kinematic viscosity field as a division of Eq. (104) by Eq. (103).

• Line 40: Gamma equation subcycle is performed by gammaEqnSubCycle.H. In order to
analize this subscycle we continue our analysis in lines 244-278. First of all nGammaCorr
and nGammaSubCycles values are read from PISO section of ./system/fvSolution
dictionary. These parameters indicates the number of corrections in gamma equation
(108) necessary to converge to a solution (this is equation is implicit inγ) and the number
of subcycles (nsc)as was explained in Section 2.2.3. In line 254 if nGammaSubCycles is
greater tha one the subcycle is started, firstly storing the ∆t of Eq. (120) (the main loop

56

time interval), then F in Eq. (121) is initialized in zero. In lines 254-267 gamma subcycle
is formally performed using a subCycle object. In this loop Eq. (121) summation is
calculated next solving gamma in equation by gammaEqn.H code. Finally rhoPhi is
overwritten by the value calculate in the subcycle. In case if nGammaSubCycles is equal
to one, gammaEqn.H is solved once. As the last thing in the gammaEqnSubCycle.H,
curvature κ and density field are updated [Eq. 103].
Now looking inside gammaEqn.H, it is possible to understand the method used for
gamma field advection. Then, let’s in lines 372-405. In lines 372-373, words are defined
to indicate the divergence schemes to flux calculating methods. Next in line 375,

term |φ|

|S f |
in Eq. 114 is calculated, them in the next line the expresion of minimum is

obtained. Cγ coefficient is obtained by a method of interface object. Finally Ur, f ,
i.e. the compressive velocity at the faces is obtained in line 377, in this case interface
normal (n f) is obtained by nHatf() method of interface object. Is important to take
in account that phir are compressive velocities at faces not fluxes.
In order to integrate Eq. (108) an special technique, called MULES27, is used. This
technique requires giving the advective field as a flux. Due this equation is implicit in
gamma (velocity fields changes if gamma changes) an iterative solution is performed
in lines 379-398. This loop is controlled by nGammaCorr that indicates the maximum
number of correction loops. To a best understanding of loop’s code let’s explain the
equations implementation.

surfaceScalarField phiGamma = fvc::flux(phi, gamma, gammaScheme)
+ fvc::flux(-fvc::flux(-phir, scalar(1) - gamma, gammarScheme), gamma,
gammarScheme);

phiGamma represents the second and third term in l.h.s. of Eq. (108) without ap-
plying the divergence operator, second term is dicretized as fvc::flux(phi, gamma,
gammaScheme) giving a flux of the product between phi and gamma fields and using
the indicated scheme for upwinding. As the next step, the third term is calculated, here
fvc::flux is called twice due the neccesity of expressing some magnitudes as fluxes
before operate with them. gamma wasn’t defined as a flux, then in order to operate
with it we use fvc::flux first to calculate the product Ur

(
1 − γ

)
[fvc::flux(-phir,

scalar(1) - gamma, gammarScheme)], and then fvc::flux is used again the calculate
the final product by gamma. Now all quantities are fluxes. Finally MULES is called
in order to solve for gamma, giving it the unknow (gamma), the overall flux (phi), the
non-temporal terms (phiGamma), and the bounds for the unknow (0 < γ < 1).
Finally in the loop, the rhoPhi field is recovered from phiGamma and the densities (line
397). Lines 400-404 give a report by standard output about gamma field.

• Line 42: once gamma equation subcycle is performed is posible to solve the momentum
and continuity equations and its coupling via a PISO loop. In this line UEqn.H file
(lines 285-311) is included. In this file the l.h.s. of Eq. 113 is assembled and if it’s
indicated a momentum predictor is calculated assembling the r.h.s. and solving for U.
fvc::reconstruct is used to generate a cell based volumetric field from a face flux
field, needed to assemble the system.

27”[interFoam] uses the multidimensional universal limiter for explicit solution (MULES) method, created
by OpenCFD, to maintain boundedness of the phase fraction independent of underlying numerical scheme,
mesh structure, etc. The choice of schemes for convection are therfore not restricted to those that are strongly
stable or bounded, e.g. upwind differencing”[16].

57

• Lines 44-48: PISO loop over pressure equation, number of correction loops is indicated
by nCorr which was read from dictionaries. To perfor this loop lines in pEqn.H are
executed (lines 316-364). In line 319 the reciprocal of diagonal coefficients (rUA)is
calculated (see first term of r.h.s in Eq. 123), this magnitude is used often later. Next,
rUA is calculated at faces via interpolation with central differencing scheme (line 320),
this is necessary due some operators needs face values as arguments.
Now, is necessary to assemble the argument of divergence at r.h.s. of Eq. (124).
This argument in two fluxes, one involving only the non-diagonal coefficients of the
matrix and another including gravity and surface tension terms. The first one phiU is
calculated in lines 322-328, including the correction described in icoFoam solver, then
the extra terms are added in lines 330-334, giving the flux phi. This flux is adjust like
in icoFoam in line 336. Now we have the argument of divergence in r.h.s. of pressure
equation. Due it an equation involving a laplacian, which discretized by a gradient,
non orthogonal corrections are needed. This correction loop is performed in lines 338-
360, as many times as is indicated by nNonOrthCorr. Equation for pressure is defined
in lines 340-343 as in indicated by Eq. (124). In line 345 reference pressure is set to start
the equation solution (lines 347-354). Once pressure equation is solved as many time
as was indicated for the non-orthogonal correction loop, new conservative fluxes are
assembled as in Eq. (125) in lines 356-359.
Velocity field is finally recovered in line 362 by means of Eq. (123) that is implemented
as:

U += rUA*fvc::reconstruct((phi - phiU)/rUAf);

note that as for fluxes term
[
au

P

]−1
used was calculated at faces (rUAf), then after using

reconstruct method to give the fields at cell centres is necessary to scale the field by
rUA. In line 363 velocity field obtained is corrected to satisfy boundary conditions.

• Lines 50-58: to finalize the temporal loop continuity errors are printed by standard
output, total pressure is calculated, fields are written to hard disk and messages about
execution times are presented.

• Lines 61-63. Once temporal loop is finalized End messages is printed by standard
output and control is returned to the system.

4 Aplications

4.1 The sloshing problem. General description

As a validation of interFoam solver we prepose to the Sloshing Problem (see Figure 8. In this
example the problem is to solve the little amplitude movement of viscous fluid an rectangular
tank. The initial position of free surface is given by

a (x) = 1.5 + a0 sin [π (1/2 − x)] (127)

where a0 is the amplitude of the sinusoidal initial perturbation and x is the coordinate
along the free surface of fluid in rest state (dashed line in Figure 8). Movement is driven by
gravitational forces and damped by viscous shear. Boundary conditions are slip in all over
the boundaries. On the free surface pressure is zero. In the example, inferior fluid is named

58

d = 1.0

h
=

1.
5

d = 1.0

a0

Free surface

Figure 8: Dimensions and initial position for free surface in sloshing problem

liquid and superior one gas, having then a multiphase problem.

The analytical solution for the linearized case was given by Prosperetti [19]

a (t) =
4ν2k2

8ν2k4 + ω2
0

a0 erfc
(
νk2t

)1/2
+

4∑
i=1

zi

Zi

(
ω2

0a0

z2
i − νk2

)
exp

[(
z2

i − νk2
)

t
]

erfc
(
zit1/2

)
(128)

where ν is the fluid’s kinematic viscosity, k the wave number, ω2
0 = g k is the inviscid

natural frequency, and each zi is a root of the following algebraic equation:

z4 + k2νz2 + 4
(
k2ν3

)3/2
z + ν2k4 + ω2

0 = 0 (129)

where Z1 = (z2 − z1) (z3 − z1) (z4 − z1), Z2, Z3, Z4 are obtained by circular permutation of
the indexes and errfc() is the complex error fuction. This expressios is valid for plane waves
of little amplitude in a infinite depth domain.

The example is solved with a0 = 0.01, and g = 1.0, all in metric units as is the standard
in OpenFOAM. For the fluids, the liquid has ν1 = 0.01 and ρ1 = 1000 whereas the gas has
ν2 = 1.48 × 10−5 and ρ2 = 1. Surface tension was negligible.

4.2 Discretization and solving

To solve the problem by OpenFOAM a 2D mesh (really OpenFOAM works ever with 3D
meshes, in this case is volumetric mesh with only one layer in perpedicular coordinate) of
12004 points and 11531 cells (triangles and rectangles, really wedges and hexahedron) (see
Figures 9.a and 9.b.

Gravity and fluids properties were loaded in constant/environmetalProperties and
constant/transportProperties dictionaries. Repect system/fvSolution dictionary, PISO
loop subsection was set with 3 corrections (nCorrectors) and 4 non-orthogonal correc-
tions (nNonOrthogonalCorrectors with the momemtum predictor deactivated. Respect
gamma equation parameters in PISO subsection were set in nGammaCorr=1 and cGamma=1.

59

Grid (Time=0.0000e+00)
FLUENT 6.3 (2d, dp, pbns, vof, lam, unsteady)

Dec 04, 2009
Grid (Time=0.0000e+00)

FLUENT 6.3 (2d, dp, pbns, vof, lam, unsteady)
Dec 04, 2009a) b)

Figure 9: a) Overall view of used mesh, b) Detail of near free surface meshing.

Preconditionated Conjugate Gradient (PCG) solver was used for pcorr, pd and pdFinal
and Preconditionated Bi-conjugate Gradient for the velocity. As preconditioners Diagonal
Incomplete-Cholesky (DIC) was used for the pressures and Diagonal Incomplete LU (DILU)
for velocities. This parameter were take from Dam Break tutorial (including in OpenFOAM
suite distribution).

Discrezation schemes were set in system/fvSchemes dictionary for gradientes, Gauss
Linear Scheme was used, for divergences in term div(rho*phi,U) Gauss Limited LinearV
was used, in term div(phi,gamma)Gauss VanLeer and in div(phirb,gamma)Gauss Interface
Compression. The scheme for laplacian was set in Gauss Linear Corrected, for interpolation
schemes a linear scheme was used and for surface normal gradients (snGradSchemes) the
corrected scheme was set (See [16] for explanations about the dictionaries and its parameters).

Parameters changed in system/controlDict dictionary were times step (deltaT), start
time (startTime, usually 0 if resume is not needed), end time (endTime), write interval
(writeInterval, this parameter was fixed in 0.05), maximum Courant number (maxCo) and
maximum time interval allowed, (maxDeltaT, remember that timestep is adjusted on the fly
as was explained in Section 2.2.3, paragraph Adaptive time step control).

Some parameters were changed in order to reproduce the analytical solution. For residu-
als the default setting were pcorr=1e-10, pd=1e-10 and relative tolerance 0.05, pdFinal=1e-7
and U=1e-6.

In Figure 10 first analysis is shown, here the parameter changed was the number sub-
cycles in gamma equation solution. This parameter has little effect in amplitude but not so
much in termporal integration.

Second analysis (see Figure 11 allows to analize the effect of changes in residuals. Results
shown allows to say that default settings for interFoam solver are enough actual purposes.

60

Figure 10: Comparison of analytical solution and different numerical solutions varying
gamma subcycles, default setting for residuals were kept, time step: 0.001, maximum
Courant number: 0.5 and maximum time step: 1.

Is important to note that residuals were, in all cases, decreased. No test were carried out
with greater residuals, but elapsed time for default residuals was acceptable.

In last tests time step and temporal discretization were changed (see Figure 12 and 13).
In the first one time step was decreased from the original (0.001) to 10 times smaller, and
100 times smaller, maximum Courant number and maximum time step was decreased by
the same ratio, temporal discretization scheme was kept isn in default settings (Backward
Euler). As is shown in Figure 12, time step has an important impact in free surface tracking.

Finally to avoid to small timestep (0.001/100 time step gives an acceptable solution but
requires relatively longer calculation time), temporal discretization is changed (see Figure
13. For original timestep (0.001) Crank-Nicholson has no effect, so smaller timestep is tested
(decreasing maximum Courant number and maximum timestep as was explained) with this
scheme in two cases, one with default residuals (d.r.) and another with all residuals set in
1e-10. As is shown in the figure best results of all (from Figure 12 and 13) are obtained with
default setting for residuals and Crank-Nicholson scheme (for 0.001/10 time step).

5 Conclusions

In this work a brief description of the Finite Volume Method and Volume of Fluid Method
were given. These description is based on bibliography related to the OpenFOAM suite,
where results were obtained.

Nowadays OpenFOAM community is growing fast, and this software is starting to be
considerated a threaten for commercial companies and an interisting tool for academics.
So the importance of a good understanding of this tool is superlative. In this way, this
work is a contribution to this comprehension, describing in detail three important solvers as
advection-diffusion solver, Navier-Stokes and VOF.

61

Figure 11: Comparison of analytical solution and different numerical solutions varying
residuals from original to change in velocity and all equations residuals. Time step: 0.001,
maximum Courant number: 0.5 and maximum time step: 1.

Figure 12: Comparison of analytical solution and different numerical solutions varying times
step for Backward Euler discretization scheme (For time step, maximum Courant number
and and maximum time step see text).

62

Figure 13: Comparison of analytical solution and different numerical solutions varying
timestep and residuals, both for Crank-Nicholson discretization scheme.

Writing this description required a lot research in forums, personal contact with devel-
opers and users, reverse engineering and theoretical revising. All this factors are now joined
and crosslinked, in order to connect the code with the underlying theory.

As a practical example sloshing problem was solved showing relative concordance with
theoretical results. Obviously a lot of another important parameters weren’t changed, as the
mesh, compressive schemes, corrections in MULES solver, preconditioners, solvers, etc. but
it’s a good start point, and the intention was only show an example using the examined tool.
More research can be done fixing a real problem and working on it.

6 Acknowledgements

I would give my sincere thanks to my advisors Noberto M. Nigro, Mario A. Storti and
Damian Ramajo (from CIMEC-INTEC, CONICET/UNL, Argentin) for their support. I want
to recognize also free help received from Patricio Bohorquez (Universidad de Malaga, Spain),
Ola Widlund (CEA, Grenoble, France), Laurence R. McGlashan (Computational Modelling
Group, University of Cambridge), Martin Romagnoli (Universidad Nacional de Rosario,
Argentina) and Daniel Wei (Tongji University, Shangai, China) and all contributors in CFD-
Online forums, OpenFOAMWiki, OpenFOAM Workshops, etc.

63

References

[1] http://en.wikipedia.org/wiki/OpenFOAM

[2] http://www.openfoam.org

[3] Ferziger, J.H.; Peric, M. Computational Methods for Fluid Dynamics, 1995

[4] Versteeg, H.K.; Malalasekera, W. An introduction to Computational Fluid Dynamics, 1st. edition.

[5] Jasak, H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows,
Ph.D Thesis, Imperial College of Science, Technology and Medicine, London, 1996.

[6] Hirsch, C. Numerical Computation of internal and external flows, 1991.

[7] Patankar, S.V. Numerical Heat Transfer and Fluid Flow, 1981.

[8] Karrholm, F.P. Rhie-Chow interpolation in OpenFOAM, 2006.

[9] Jasak, H. Numerical Solution Algorithms for Compressible Flows, Lecture Notes for University of
Zagreb.

[10] Hirt, C.W.; Nichols B.D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, Journal
of Computational Physics, Vol. 39, 1, p. 201-225

[11] Ubbink, O. Numerical prediction of two fluid systems with sharp interfaces, Ph.D Thesis, Imperial
College of Science, Technology and Medicine, London, 1997.

[12] Ubbink, H. Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions,
Ph.D Thesis, Imperial College of Science, Technology and Medicine, London, 2002.

[13] Berberovic, E.; Van Hinsberg, N.P.; Jakirlic, S.; Roisman, I.V; Tropea, C. Drop impact onto a liquid
layer of finite thicness: Dynamics of the cavity evolution, Physical Review E, 79, 2009.

[14] OpenCFD, Technical Report No. TR/HGW/02, 2005 (unpublished).

[15] A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput-
ers in Physics, Vol. 12, 6, p. 620-631, 1998

[16] OpenCFD Ltd. OpenFOAM, The Open Source CFD Toolbox, User Guide, 2009.

[17] OpenCFD Ltd. OpenFOAM, The Open Source CFD Toolbox, Programmer’s Guide, 2009.

[18] http://openfoamwiki.net/index.php/IcoFoam

[19] Prosperetti, A Motion of Two Superposed Viscous Fluids, Physics of Fluids, 24(7):1217-1223, 1981.

64

http://en.wikipedia.org/wiki/OpenFOAM
http://www.openfoam.org
http://openfoamwiki.net/index.php/IcoFoam

	General description of the OpenFOAM suite
	Introduction to Volume of Fluid Theory. Surface reconstruction strategies
	Finite Volume Method
	Introduction
	Discretisation of the Solution Domain
	Discretisation of the Transport Equation
	Discretisation of Spatial Terms
	Temporal Discretisation
	Implementation of Boundary Conditions
	Solution Techniques for Systems of Linear Algebraic Equations
	Discretisation Procedure for the Navier-Stokes System
	Derivation of the Pressure Equation
	Pressure-Velocity Coupling
	Solution Procedure for the Navier-Stokes System
	An alternative derivation of the Pressure Equation

	Volume of Fluid Method
	Introduction
	Mathematical model
	Computational method

	OpenFOAM library overview. Solver examples
	Fields and variables. Discrete differential operators
	Implementation of tensor fields
	Implementation of partial-differential-equation classes
	Mesh topology and boundary conditions

	Solver examples
	Scalar transport equation
	Isothermal, incompressible and laminar Navier-Stokes solver
	Volume of Fluid laminar solver

	Aplications
	The sloshing problem. General description
	Discretization and solving

	Conclusions
	Acknowledgements

