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Chapter 1

Tutorial XiFoam

1.1 Introduction

In order to help the users to understand the physics of the premixed turbulent combustion, a short
introduction of this phenomenon is presented. Besides, this tutorial looks into the implementation
of the code, and presents a brief explanation of different parameters as well as different classes used
in this solver. Moreover, it describes how to pre-process and run a premixed turbulent combustion
case using the XiFoam solver. Finally, an implementation of new combustion model is presented.
The case study is a cubic combustion chamber, with ignition at its centre, at 0.001 ms.
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1.2 Physics of Premixed Combustion

This section presents a brief introduction to the modelling of the premixed turbulent combustion
and its governing equations.
In premixed combustion, fuel and oxidizer are mixed at the molecular level prior to ignition. Com-
bustion occurs as a flame front propagates into the unburnt reactants. Examples of premixed
combustion include aspirated internal combustion engines, lean-premixed gas turbine combustors,
and gas-leak explosions.
The effect of turbulence is that it wrinkles and stretches the propagating laminar flame sheet, in-
creasing the sheet area and, in turn, the effective flame speed. The large turbulent eddies tend to
wrinkle and corrugate the flame sheet, while the small turbulent eddies, if they are smaller than the
laminar flame thickness, may penetrate the flame sheet and modify the laminar flame structure.
As the premixed flame is a reaction wave propagating from burned to fresh gases, the basic param-
eter is known to be the progress variable. In the fresh gas, the progress variable is conventionally
put to zero. In the burned gas, it equals unity. Across the flame, the intermediate values describe
the progress of the reaction. A progress variable can be set with the help of any quantity, like
temperature, reactant mass fraction, provided it is bounded by a single value in the burned gas and
another one in the fresh gas. The progress variable is usually named c, in usual notations[1].

c =
T − Tf

Tb − Tf
(1.1)

Where b stands for burned gas, and f stands for fressh gas. It is seen that c is a normalization of a
scalar quantity.
In OpenFOAM, the flame front propagation is modelled by solving a transport equation for the
density-weighted mean reaction regress variable denoted by b(eq 1.7), where:

b = 1 − c (1.2)

∂

∂t
(ρb) + ∇.(ρ~ub) −∇.(

µt

Sct
∇b) = −ρSc (1.3)

Sct = µ
ρD : turbulent Schmidt number.

Sc : reaction regress source term (the dimesnion is [T−1] ), and is modeled as equation 1.4:

ρSc = ρuSuΞ|∇b| (1.4)

By substituting equation 1.4 to equation 1.7 we would have:

∂

∂t
(ρb) + ∇.(ρ~ub) −∇.(

µt

Sct
∇b) = −ρuSuΞ|∇b| (1.5)

where:
b : mean reaction regress variable
Su : laminar flame speed [m/s]
D : diffusion coefficient [m2/s]
Ξ : Turbulent flame velocity and laminar flame velocity ratio
ρu : density of unburnt mixture [kg/m3]

Based on this definition:

b=1 : unburnt mixture
b=0 : burnt mixture

The value of b is defined as a boundary condition at all flow inlets. It is usually specified as
either 0 (unburnt) or 1 (burnt). OpenFOAM has a premixed turbulent combustion model based
on the reaction regress variable(b=1-c) approach. Information about this model is provided in the
bEqn.H file of the XiFoam solver.
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1.3 Introduction of the XiFoam files

In this section, the XiFoam solver and some of the important related files of the solver will be
explained. XiFoam, is a solver for compressible premixed/partially-premixed combustion with tur-
bulence modelling. At first we should create our own XiFoam solver and rename it to myXiFoam.

1.3.1 Creating myXiFoam solver

Follow the instruction:

cd $WM_PROJECT_USER_DIR
cp -r $FOAM_APP/solvers/combustion/XiFoam myXiFoam
cd myXiFoam

We should rename XiFoam.C to myXiFoam.C and also bEqn.H to myBEqn.H:

mv XiFoam.C myXiFoam.C
mv bEqn.H myBEqn.H

Now, we also have to modify the files in Make directory:

sed -i s/"XiFoam"/"myXiFoam"/g Make/files
sed -i s/"FOAM_APPBIN"/"FOAM_USER_APPBIN"/g Make/files

So we would have:

myXiFoam.C
EXE = $(FOAM_USER_APPBIN)/myXiFoam

Also we have to replace bEqn.H with myBEqn.H in all files:

sed -i s/"bEqn.H"/"myBEqn.H"/g *.*

Now run wmake command and you will have myXiFoam solver:

wmake

1.3.2 Add subroutine to calculate the flame propagating radius(Optional)

In premixed turbulent combustion, flame propagation radius is one of the important parameters
which help to better understanding the flame treatment. So it should be measured during the sim-
ulation. The expression for the radius is written in equation 1.6:

R = [(
3

4πρb
)
∫∫∫

ρ(1 − b)dxdydz]1/3 (1.6)

To calculate this parameter we must do the following steps:
Create the radiusFlame.H file

gedit radiusFlame.H

In order to implement the equation 1.6, the integrate must be discretized. This done by summing
the value of ρ ∗ (1 − b) multiply the mesh volume(dxdydz) in the whole domain.
Add the following lines in this file:

Info<< "Reading radiusFlame.H file "<<endl;
#include "mathematicalConstants.H"
volVectorField centres = mesh.C();
scalar SummationRho=0.0;
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scalar RadiusMinRho=0.0;
const scalar coeff=3./(4.*mathematicalConstant::pi);
forAll(centres,k) { SummationRho=SummationRho+

(mesh.V()[k]*rho[k]*(scalar(1.)-b[k]))/(min(rho).value());
}

RadiusMinRho=Foam::pow(coeff*SummationRho,(1./3.));
Info<< "RadiusMinRho = "<< RadiusMinRho <<endl;

Since we are going to calculate the radius at each time step, we include this file in myXiFoam.C time
loop after the line: runTime.write();
So we will have:

runTime.write();
#include "radiusFlame.H"

Since we are going to save these data during the simulation, we should create a file and save them
there. Do the following steps:

gedit createXiFoamOutput.H

Add the following line in this file:

OFstream RadiusFlame("XiFoamOutput.txt");

As OFstream command used, it is necessary to include some header files. That is done by adding
the:

#include "IFstream.H"
#include "OFstream.H"

after:

#include "Switch.H"

in myXiFoam.C file.

Moreover, it is necessary to create writeXiFoamOutput.H file, and write:

RadiusFlame << "Time= "<< runTime.timeName() << "\tRadiusMinRho= "<< RadiusMinRho<<"
\tMin(rho)= "<< min(rho).value() <<endl;

Now :

#include "createXiFoamOutput.H"

Must be included in myXiFoam.C in the main function, and befor the while loop.
It is necessary to save the radius in the file after the calculation. That is done by adding the:

#include "writeXiFoamOutput.H

After the line:

#include "radiusFlame.H"

Finally run the wmake command:

wmake

Therefore, the following files are in myXiFoam directory:
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|-- Make
| |-- files
| |-- linux64GccDPOpt
| |-- options
|-- UEqn.H
|-- createFields.H
|-- createXiFoamOutput.H
|-- ftEqn.H
|-- hEqn.H
|-- huEqn.H
|-- myBEqn.H
|-- myXiFoam.C
|-- myXiFoam.dep
|-- pEqn.H
|-- radiusFlame.H
|-- readCombustionProperties.H
‘-- writeXiFoamOutput.H

In the following section we look through some of these file.

1.3.3 myBEqn.H File

Following items are in myBEqn.H file:

• Transport equation for regress variable b
• Laminar flame speed based on the different models
• Weller combustion modell[2] for calculation Xi=St/Su

Transport equation for b is presented in equation 1.7 [2]:

∂

∂t
(ρb) + ∇.(ρ~ub) −∇.(

µt

Sct
∇b) = −ρuSuΞ|∇b| (1.7)

and here is the implementation of this equation:

fvScalarMatrix bEqn
(
fvm::ddt(rho, b)
+ mvConvection->fvmDiv(phi, b)
+ fvm::div(phiSt, b, "div(phiSt,b)")
- fvm::Sp(fvc::div(phiSt), b)
- fvm::laplacian(turbulence->alphaEff(), b)
);

There are three models to calculate the Xi:

1- fixed
2- algebraic
3- transport

In the following parts these models will be discussed.

1- fixed:
Do nothing, Xi is fixed!
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2- algebraic:
Algebraic equation is implemented based on the equation 1.8 and 1.9:

Ξ∗
eq = 1 + 0.62

√
u′

Su
Rη (1.8)

Ξeq = 1 + 2(1 − b)(Ξ∗
eq − 1) (1.9)

where:

u′ is the turbulence intensity.
Rη is the kolmogorov Reynolds number.

And the implementation is:

Xi == scalar(1) +
(scalar(1) + (2*XiShapeCoef)*(scalar(0.5) - b))
*XiCoef*sqrt(up/(Su + SuMin))*Reta;

XiShapeCoef and XiCoef are input data which discussed later in section 1.4.8

3- transport:
For mathematical formulation please refer to [2], and for implementation of this model you can refer
to bEqn.H file.
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1.4 Setting up the Case

This section provides necessary setup to run a case using the XiFoam(or myXiFoam) solver. Now
we can run the case using myXiFoam solver which is exactly the same as XiFoam solver, except that
we have just implemented additional piece of code to capture the flame radius.
Figure 1.1 presents a case study which is a cubic combustion chamber, and ignition occurred at its
centre. Since the ignition is spherical, and the problem is symmetrical, to reduce the computational
cost, 1/8 domain will be solved using symmetric boundary condition.

Figure 1.1: Geometry of the XiFoam tutorial case

1.4.1 Create the Geometry

You can download the case file from:
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2010/ehsanYasari/ehsanYasariFiles.tgz

Alternatively, you can copy the default case of XiFoam to run directory and modify it.

run
cp -r $FOAM_TUTORIALS/combustion/XiFoam/ras/moriyoshiHomogeneous chamber $
cd chamber

As you can see, the file structure for XiFoam solver is similar to the other OpenFOAM tutorials.
The case directory consists of the following subdirectories:

/0
/constant
/system

Run the following command to see an overview of the files in this case.

tree -L 2

In the following section we will look through these folders to initiate our setup.

1.4.2 Constant Folder

In the constant folder, the following files and directories are found:

|-- RASProperties
|-- combustionProperties
|-- g
|-- polyMesh (Folder)
|-- thermophysicalProperties
‘-- turbulenceProperties
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1.4.3 polyMesh

The case domain consists of a square with length equals to 35mm. A uniform mesh of 35*35*35 is
used to have cell size equals to 1mm. Since the cell size is smaller than the ignition diameter (3mm)
we can capture the ignition.
We must modify the blockMehDict as follows:

gedit constant/polyMesh/blockMeshDict
Copy the new geometry in this file. Here are the blockMesh entries for this case:

convertToMeters 0.001;
vertices
(

(0 0 0) //vertex No.1
(0 35 0) //vertex No.2
(35 0 0) //vertex No.3
(35 35 0) //vertex No.4
(0 0 35) //vertex No.5
(0 35 35) //vertex No.6
(35 0 35) //vertex No.7
(35 35 35) //vertex No.8

);
blocks
(

hex (0 2 3 1 4 6 7 5) (35 35 35) simpleGrading (1 1 1) //Block No.1
);
edges
(
);
patches
(

symmetryPlane left
(

(0 4 5 1)
)
symmetryPlane right
(

(2 3 7 6)
)
symmetryPlane top
(

(1 5 7 3)
)
symmetryPlane bottom
(

(0 2 6 4)
)
symmetryPlane front
(

(4 5 7 6)
)
symmetryPlane back
(

(0 1 3 2)
)

);
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mergePatchPairs
(
);

Then run the blockMesh command to generate your geometry and mesh:
blockMesh

To view the geometry in paraview, type:
paraFoam

We set other parameters in the constant directory in the next sections.

1.4.4 turbulenceProperties

In the turbulenceProperties file you can specify your turbulence model. You have two options :

1- RASModel
2- LESModel

In this tutorial we use RASModel, so the simulation type is set to RASModel:

simulationType RASModel;

With RASModel selected in this case, the choice of RAS model is specified in a RASProperties
file.

1.4.5 RASProperties

In RASProperties file you can define your RAS model for compressible flows. You can choose the
model from the table1.1.

keyword description
laminar Dummy turbulence model for laminar flow
kEpsilon Standard k-ε model
kOmegaSST k-ω-SSt model
RNGkEpsilon RNG k-ε model
LaunderSharmaKE Launder-Sharma low-Re k-ε model
LRR Launder-Reece-Rodi RSTM
LaunderGibsonRSTM Launder-Gibson RSTM
realizableKE Realizable k-ε model
SpalartAllmaras Spalart-Allmaras 1-eqn mixing-length model

Table 1.1: RAS turbulence models for compressible fluids-compressibleRASModels

For more information regarding RAS models one can refer to [3]. Here the LaunderSharmaKE
model is selected:

RASModel LaunderSharmaKE;
turbulence on;
printCoeffs on;

1.4.6 g

In the g file you can specify the gravity.

dimensions [0 1 -2 0 0 0 0];
value ( 0 0 0 );
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The gravity is set to zero in all directions.

1.4.7 thermophysicalProperties

The thermophysicalProperties file for the present case is:

thermoType hhuMixtureThermo<homogeneousMixture<sutherlandTransport<specieThermo<
janafThermo<perfectGas>>>>>;

stoichiometricAirFuelMassRatio stoichiometricAirFuelMassRatio [ 0 0 0 0 0 0 0 ] 15.675;
fuel fuel 1 44.0962 200 5000 1000 7.53414 0.0188722 -6.27185e-06 9.14756e-10
-4.78381e-14 -16467.5 -17.8923 0.933554 0.0264246 6.10597e-06 -2.19775e-08
9.51493e-12 -13958.5 19.2017 1.67212e-06 170.672;

Note: this file also have the similar coefficient for oxidant, reactant, product and burntProduct.

? keyword: thermoType:
The thermophysicalProperties dictionary is read by any solver that uses the thermophysical
model library. A thermophysical model is constructed in OpenFOAM as a pressure-temperature (p
- T) system from which other properties are computed. There is one compulsory dictionary entry
called thermoType which specifies the complete thermophysical model that is used in the simulation.

The thermophysical modelling starts with a layer that defines the basic equation of state (here: per-
fectGas) and then adds more layers of modelling that derive properties from the previous layer(s).
The naming of the thermoType reflects these multiple layers of modelling as listed in figure 1.2.
Each layer have various options, so for more details you can refer to userGuide[3]. In the figure 1.3

Figure 1.2: Description of the thermo entry

the possible entry for XiFoam solver is presented.
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Figures 1.4 is the Inheritance diagram for hhuMixtureThermo. The diagram shows that hhuCombustionThermo

Figure 1.3: Possible entry for thermoType in thermoPhysicalProperties file for the XiFoam solver

class inherited from hCombustionThermo, and hCombustionThermo inherited from basicPsiThermo,
and basicPsiThermo inherited from bsicThermo. So hhuCombustion has all the characterestics of
hCombustionThermo and so on.

? keyword: stoichiometricAirFuelMassRatio:
This option is the stoichiometric ratio of Air-Fuel, and is read on line 52 by the following file :

src/thermophysicalModels/reactionThermo/mixtures/inhomogeneousMixture.C

Note: fuel, oxidant and burntProducts are also read by this file if in thermoType layer inhomogeneousMixture
was selected.
reactants, and products coefficient are read on line 52 by the following file:

src/thermophysicalModels/reactionThermo/mixtures/homogeneousMixture.C

Full description of these coefficient is in UserGuide[3], as well as the tutorial written by Andreas
Lundström[4], but we provide it here again.
The Heat capacity, enthalpy and entropy are evaluated by a function with coefficients from polyno-
mials:

C◦
pk

R
= a1k + a2kTk + a3kT 2

k + a4kT 3
k + a5kT 4

k (1.10)

H◦
k

RTk
= a1k +

a2k

2
Tk +

a3k

3
T 2

k +
a4k

4
T 3

k +
a5k

5
T 4

k +
a6k

Tk
(1.11)

S◦
k

R
= a1k lnTk + a2kTk +

a3k

2
T 2

k +
a4k

3
T 3

k +
a5k

4
T 4

k + a7k (1.12)
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Figure 1.4: Inheritance diagram for hhuMixtureThermo

In order to explain these coefficients , we rewrite them in separate lines as follows:

Line 1: fuel
Line 2: fuel 1 44.0962
Line 3: 200 5000 1000
Line 4: 7.53414 0.0188722 -6.27185e-06 9.14756e-10 -4.78381e-14 -16467.5 -17.8923
Line 5: 0.933554 0.0264246 6.10597e-06 -2.19775e-08 9.51493e-12 -13958.5 19.2017
Line 6: 1.67212e-06 170.672;
Line 1: keyword
Line 2: <specieCoeffs>: n_moles Molecular weight(W(kg/kmol))
Line 3: Lower temperature limit Tl(K), Upper temperature limit Th(K), Common temperature Tc(K)
Line 4: High temperature coefficients: a1-a7 (a6:enthalpy offset, a7: entropy offset)
Line 5: Low temperature coefficients: a1-a7 (a6:enthalpy offset, a7: entropy offset)
Line 6: Sutherland coefficient

The last two coefficients are Sutherland coefficients which are used to calculate diffusivity as a func-
tion of temperature:

µ = As
T 1/2

1 + Ts/T
(1.13)

The laminar viscosity in turn is calculated using Sutherland’s law where the constants are:
As = 1.67212e-6
Ts = 170.672
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1.4.8 combustionProperties

Here is the combustionProperties file of the present case. An explanation for each keyword is also
presented.

laminarFlameSpeedCorrelation Gulders;
fuel Propane;
Su Su [ 0 1 -1 0 0 0 0 ] 0.43;
SuModel unstrained;
equivalenceRatio equivalenceRatio [ 0 0 0 0 0 0 0 ] 1;
sigmaExt sigmaExt [ 0 0 -1 0 0 0 0 ] 100000;
XiModel transport;
XiCoef XiCoef [ 0 0 0 0 0 0 0 ] 0.62;
XiShapeCoef XiShapeCoef [ 0 0 0 0 0 0 0 ] 1;
uPrimeCoef uPrimeCoef [ 0 0 0 0 0 0 0 ] 1;
//GuldersEGRCoeffs
GuldersCoeffs
{

Methane
{

W 0.422;
eta 0.15;
xi 5.18;
alpha 2;
beta -0.5;
f 2.3;

}

Propane
{

W 0.446;
eta 0.12;
xi 4.95;
alpha 1.77;
beta -0.2;
f 2.3;

}

IsoOctane
{

W 0.4658;
eta -0.326;
xi 4.48;
alpha 1.56;
beta -0.22;
f 2.3;

}
}
ignite yes;
ignitionSites ( { location ( 0 0 0.0005 ) ; diameter 0.003 ; start 0 ; duration 0.001 ; strength 1 ; } );
ignitionSphereFraction 1;
ignitionThickness ignitionThickness [ 0 1 0 0 0 0 0 ] 0.001;
ignitionCircleFraction 0.5;
ignitionKernelArea ignitionKernelArea [ 0 2 0 0 0 0 0 ] 0.001;
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? keyword: laminarFlameSpeedCorrelation
There are three different choices for laminar flame speed which presented in figure 1.5:

1- Gulders
2- GuldersEGR
3- constant

Figure 1.5: laminar flame speed class reference

In the case of selecting Gulders/GuldersEGR, laminar flame speed is calculated based on the Gulders
formulation. You can see these file for the Gulders formulation:

src/thermophysicalModels/laminarFlameSpeed/Gulders/Gulders.C
src/thermophysicalModels/laminarFlameSpeed/GuldersEGR/GuldersEGR.C

In these cases(Gulders,GuldersEGR), the user must specify the fuel and the corresponding coef-
ficients to calculate the laminar flame speed in GuldersCoeffs/GuldersEGRCoeffs part, which we
will explain in GuldersCoeffs/GuldersEGRCoeffs part. Figure 1.6 shows the inheritance diagram
for Gulders, GuldersEGR, and constant class. Also, the connection between laminar flame speed
class and these classes is presented.

(a) Gulders (b) GuldersEGR (c) constant

Figure 1.6: Gulders, GuldersEGR, and constant class

The diagrams shows that for example GuldersEGR/Gulders class gets some coefficient from dictio-
nary(the coefficients that will be discussed later), calculates the laminar flame speed, and returns it
to laminarFlameSpeed class.

? keyword: fuel
The fuel name must be specified to calculate the laminar flame speed, if Gulders/GuldersEGR
is selected in the laminarFlameSpeedCorrelation part. fuel keyword is read on line 47 of the
following file as presented in figure 1.7:

src/thermophysicalModels/laminarFlameSpeed/laminarFlameSpeed/laminarFlameSpeed.C

line 47: fuel_(dict.lookup("fuel")),
fuel Propane;

17
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and it is then used on line 57, 56 of the following files, respectively:

src/thermophysicalModels/laminarFlameSpeed/Gulders/Gulders.C
src/thermophysicalModels/laminarFlameSpeed/GuldersEGR/GuldersEGR.C

line 57, 56: coeffsDict_(dict.subDict(typeName + "Coeffs").subDict(fuel_)),

Line 57, 56 specify that based on the fuel and Gulders or GuldersEGR keywords, the necessary
coefficients are read from the dictionary. Figure 1.7 shows that keyword fuel is read through a
dictionary and used in laminar flame speed class.

Figure 1.7: Connection between fuel keyword and laminar flame speed class

? keyword: Su
If we have the constant laminar flame speed(Su), the constant option must be selected on laminarFlameSpeedCorrelation
and its value must be defined at Su keyword.
On line 57 of the following file, constant laminar flame speed(Su) is read.

src/thermophysicalModels/laminarFlameSpeed/constant/constant.C

line 57 : Su_(dict.lookup("Su"))
Su Su [ 0 1 -1 0 0 0 0 ] 0.43;

? keyword: equivalenceRatio
EquivalenceRatio of a homogeneous mixture is defined as the ratio of the fuel-to oxidizer ratio to
the stoichiometric fuel-to-oxidizer ratio.

φ =
mfuel

moxidizer

( mfuel

moxidizer
)st

(1.14)

This keyword is read by the following file:

src/thermophysicalModels/laminarFlameSpeed/laminarFlameSpeed/laminarFlameSpeed.C

? keyword: SuModel
There are three options for SuModel as follows:

1- unstrained
2- equilibrium
3- transport

These corresponding keyword are read by the following file:

applications/solvers/combustion/XiFoam/readCombustionProperties.H

For more information about the differences between these models, you can refer to line 120 of the
following file:

applications/solvers/combustion/XiFoam/bEqn.H
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? keyword: sigmaExt
sigmaExt is the strain rate at extinction which obtained from the Markstein length by extrapolating
to Su --> 0 .
Markstein length: Length that measures the effect of curvature on a flame. The larger the Markstein
length, the greater the effect of curvature on burning velocity. The Markstein length divided by the
flame thickness is the Markstein number.
This keyword is read by the following file:

applications/solvers/combustion/XiFoam/readCombustionProperties.H

and used in myBEqn.H file.

? keyword: XiModel
There are different models for flame wrinkling Xi=St/Sl (turbulent flame speed/laminar flame speed)
which are:

1- fixed
2- algebraic
3- transport

These keywords are read by the following file:

applications/solvers/combustion/XiFoam/readCombustionProperties.H

For more information about the differences between implementation of these models, you can refer
to line 166 of the following file:

applications/solvers/combustion/XiFoam/bEqn.H

And also for more details regarding the formulation you can refer to Weller Article[2].

? keyword: XiCoef and XiShapeCoef
XiCoef and XiShapeCoef are used in the algebraic model for Xi on line 175 of bEqn.H which has
already been presented in section 1.3.3 .
These keywords are read by the following file:

applications/solvers/combustion/XiFoam/readCombustionProperties.H

? keyword: uPrimeCoef
uPrimeCoef is used for calculation of the velocity fluctuation on line 74 of the bEqn.H:

line 74: volScalarField up = uPrimeCoef*sqrt((2.0/3.0)*turbulence->k());

? keyword: GuldersCoeffs/ GuldersEGRCoeffs:
Here are the coefficients, which are used to calculate laminar flame speed according to the Gulders
formulation for specific fuel. As we told, these coefficients are read by the following codes depending
on the model that has been selected for laminarFlameSpeedCorrelation.

src/thermophysicalModels/laminarFlameSpeed/Gulders/Gulders.C
src/thermophysicalModels/laminarFlameSpeed/GuldersEGR/GuldersEGR.C

So if any one would like to modify the laminar flame speed models, he/she probably should modify
these codes. Here is the formulation for calculating the laminar flame velocity based on GuldersCoeffs
GuldersEGRCoeffs coefficients:

Su = WΦηexp[−ξ(Φ − 1.075)2](
T

T0
)α(

P

P0
)β (1.15)
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where, Φ is a equivalence ratio.

? keyword: ignite
If you have ignition, it must be specified here. This entry is read by the readCombustionProperties.H
file on line 45:

line 45: ignition ign(combustionProperties, runTime, mesh);

? keyword: ignitionSites
The location of ignition, the duration and the strength are specified at ignitionSites keyword
as follows:

ignitionSites ({location (0 0 0.0005); diameter 0.003; start 0; duration 0.001; strength 1;});

These data are read by the following code:
src/engine/ignition/ignitionSiteIO.C

? keyword: ignitionSphereFraction, ignitionThickness, ignitionCircleFraction, ignitionKernelArea
These factors are read by the following files:

src/engine/include/stCorr.H
StCorr is used when calculating the turbulent flame speed flux in bEqn.H file on line 37:

line 37: surfaceScalarField phiSt = fvc::interpolate(rhou*StCorr*Su*Xi)*nf;

StCorr varies between 1-10 during the simulation.
StCorr.H file uses mesh.nGeometricD() function which checks the shape of the mesh, the number
of valid geometric dimensions in the mesh, and returns the value 3, 2 or 1 which correspond to:

3: Assume it is part-spherical
2: Assume it is part-circular
1: Assume it is plane or two planes

Depending on the geometry (or in other words, depends on these values(3, 2, or 1) which re-
turn by NgeometricD()), one of the above factors (ignitionSphereFraction, ignitionThickness,
ignitionCircleFraction, ignitionKernelArea) is used.
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1.5 /0 Folder

We have the following files in 0 directory, which must be modified based on the new geometry and
boundary conditions.
alphat b epsilon k mut p Su T Tu U Xi

1.5.1 Boundary Conditions

Boundary conditions for all sides are symmetry planes.

boundaryField
{

left
{

type symmetryPlane;
}
right
{

type symmetryPlane;
}
top
{

type symmetryPlane;
}
bottom
{

type symmetryPlane;
}
front
{

type symmetryPlane;
}
back
{

type symmetryPlane;
}

}

1.5.2 Initial Conditions

The initial condition are found in /0 directory. Table 1.2 presents the initial conditions. Since there
is no ignition at time = 0, we have b=1 and Xi=1 in the whole domain.

21



1.5. /0 FOLDER CHAPTER 1. TUTORIAL XIFOAM

Variable Description Initial Condition
alphat Turbulence thermal diffusivity [kg/m/s] internalField uniform 0
b Regress variable (dimensionless) internalField uniform 1
epsilon The turbulence kinetic energy dissipation rate [m2/s3] internalField uniform 375
k the turbulence kinetic energy [m2/s2] internalField uniform 1.5
mut the turbulence viscosity [kg/m/s] internalField uniform 0
p Pressure [kg/m/s2] internalField uniform 100000
Su Laminar flame speed [m/s] internalField uniform 0.43
T Temperature [K] internalField uniform 360
Tu Unburnt Temperature [K] internalField uniform 360
U Velocity Field [m/s] internalField uniform (0 0 0)
Xi The flame-wrinking St/Su(dimensionless) internalField uniform 1

Table 1.2: Initial Condition
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1.6 System

There is no need to change the system directory files.
Now you can run the simulation:

myXiFoam >log &
paraFoam

Figure 1.8 shows the regress variable at several time steps. As it can been seen, the flame propagates
through unburned gas. The value of b is equal to 1 at start time, and then it decreases and at the
ignition time it has its minimum value.

(a) t = 0 (b) t = 0.0002

(c) t = 0.0004 (d) t = 0.0006

(e) t = 0.0008 (f) t = 0.001

Figure 1.8: The variation of the regress variable at different time steps
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1.7 Implementing a new algebraic
combustion model for Xi

In this section we are going to implement a new algebraic model to calculate the turbulent flame
speed. For details explanation of this model please refer to the Lipatnikov paper [5].
Equation 1.16 presnts a new algebraic model for calculation the turbulent flame speed.
Nore: All files which are created here must be in the same directory as the solver directory.

SturbT imeDependent = Sturb[1 +
τ

′

t

t + t0
(exp(

−t + t0
τ

′
t

))]
1
2 (1.16)

where:

Sturb = XiShapeCoeffDa0.25u′ (1.17)

Da is Damköhler number.
Da =

τt

τc
(1.18)

t0 = 0.1τt (1.19)

τt and τ
′

t are the turbulent time scales.

τt =
L

u′ (1.20)

τ
′

t =
αturb

u′2
(1.21)

τc is the chemical time scale.
τc =

αmolecular

S2
L,0

(1.22)

αturb and αmolecular are turbulent and molecular thermal diffusivity, respectively. L is the turbulence
length scale.

L = C0.75
µ

k3/2

ε
(1.23)

k is the turbulent kinetic energy, and ε is the turbulent dissipation rate.

To implement this model, it is necessary to create the required fields related to the equations 1.18
to 1.16 and initialized them. This is done by creating the myCreateFields.H file as follows:

gedit myCreateFields.H

And write the following lines, which create the required fileds and initialized them:

Info<<"Reading myCreateFields.H File"<<endl;

scalar Cmu=0.09;
volScalarField up = uPrimeCoef*sqrt((2./3.)*turbulence->k());
volScalarField L=Cmu*pow(turbulence->k(),1.5)/turbulence->epsilon();

volScalarField tauTurb = L/up;
volScalarField tauTurbPrime = (turbulence->alphaEff()-thermo.alpha())/(rho*pow(up,2));
volScalarField tauChem = thermo.alpha()/(rho*pow(up,2));
volScalarField Da = tauTurb/tauChem ;
volScalarField tO=0.1*L/up;
Info<< "Calculating turbulent flame speed field S_turb\n" << endl;
volScalarField S_turb
(
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IOobject
(

"S_turb",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE

),
XiShapeCoef*up*pow(Da,0.25)

);

Info<< "Calculating turbulent flame speed field S_turbTimeDependent \n" << endl;
volScalarField S_turbTimeDependent
(

IOobject
(

"S_turbTimeDependent",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE

),
S_turb*sqrt(1.+tauTurbPrime/(runTime+tO)*(exp(-1.*(runTime+tO)/tauTurbPrime)-1.))

);

Moreover, these fields must be calculated during the simualtion. Therefore, creates newStModel.H
and defines parameters in the equations 1.18 to 1.16:

gedit newStModel.H

And write:

Info<< "Reading newStModel.H file \n"<< endl;

L = Foam::pow(Cmu,scalar(0.75))*pow(turbulence->k(),1.5)/turbulence->epsilon();
tauTurb = L/up;
tauTurbPrime = (turbulence->alphaEff()-thermo.alpha())/(rho*pow(up,2));
tauChem = thermo.alpha()/(rho*pow(up,2));
Da = tauTurb/tauChem ;
tO=0.1*L/up;

S_turb = XiShapeCoef*up*pow(Da,0.25);
S_turbTimeDependent=S_turb*

sqrt(1.+tauTurbPrime/(runTime+tO)*(exp(-1.*(runTime+tO)/tauTurbPrime)-1.));
Xi=S_turbTimeDependent/Su;

Finally, these file must be included in the appropriate files. So, some modification in myBEqn.H and
myXiFoam.H must be done.
In myXiFoam.H after the #include "createFields.H" add:

#include "myCreateFields.H"

And in myBEqn.H we must include the new algebraic model. After :
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if (XiModel == "fixed")
{

// Do nothing, Xi is fixed!
}

Add:

else if (XiModel == "newAlgebraic")
{

#include "newStModel.H"
}

Then run

wmake

Now myXiFoam solver with new combustion model is ready to run. In order to use this solver
with new combustion model, the user must specified newAlgebraic for the XiModel keyword in
combustionProperties file.
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