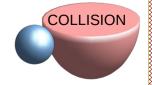
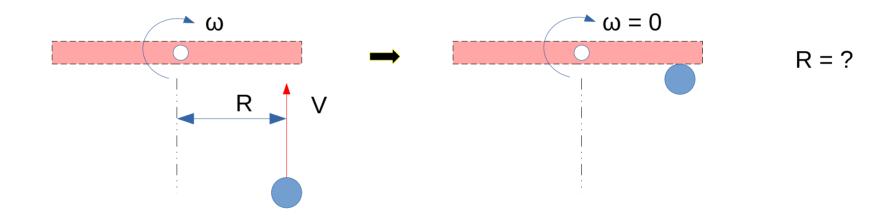
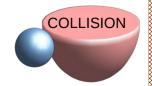

INELASTIC COLLISION


A ROD OF MASS ' M_1 ' AND LENGTH 'L' IS **ROTATING** ON A **FRICTIONLESS** HORIZONTAL SURFACE AT **ANGULAR SPEED** ω ABOUT ITS MID POINT.


A POINT MASS 'M₂' MOVING AT SPEED 'V' COLLIDES AT RADIUS 'R' IN A TANGENTIAL DIRECTION (perpendicular to the rod) OPPOSITE TO ROTATION OF THE ROD AND STICKS TO IT.


FOR WHAT VALUE OF 'R' THE ROTATING ROD WILL STOP ROTATING INSTANTANEOUSLY AFTER COLLISION?

KNOWN:

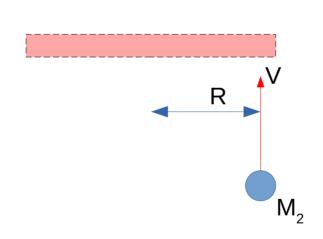
ANGULAR MOMENTUM OF ROD = Q1

ANGULAR MOMENTUM OF MASS = Q2

TO BE CALCULATED:

LOCATION OF COLLISION

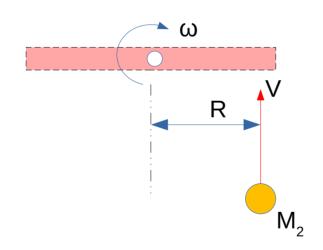
DIRECTION OF IMPACT


ANGULAR SPEED AFTER COLLISION

GOVERNING EQUATION:

NO EXTENAL TORQUE: CONSERVATION OF

ANGULAR MOMENTUM


$$Q_1 = M_1 \cdot L^2 \cdot \omega / 12$$

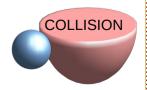
CLOCKWISE ASSUMED POSITIVE

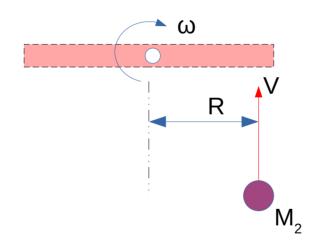
$$Q_2 = -[M_2 . V] . R$$

NEGATIVE AS COUNTERCLOCKWISE

ANGULAR MOMENTUM = MOMENT OF MOMENTUM

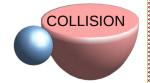
$$Q_1 = M_1 \cdot L^2 \cdot \omega / 12$$

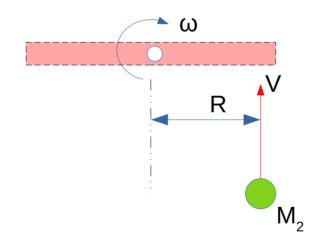

BEFORE COLLISION


$$Q_1 + Q_2$$

$$Q_2 = -[M_2 . V] . R$$

AFTER COLLISION



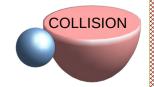

BEFORE COLLISION

AFTER COLLISION

$$Q_1 + Q_2$$

$$M_1 \cdot L^2 \cdot \omega / 12 - [M_2 \cdot V] \cdot R = 0$$

BEFORE COLLISION


AFTER COLLISION

$$Q_1 + Q_2$$

$$M_1 \cdot L^2 \cdot \omega / 12 - [M_2 \cdot V] \cdot R = 0$$

$$R = \frac{M_1 \cdot L^2 \cdot \omega / 12}{[M_2 \cdot V] \cdot R}$$

(ANSWER)

